Mean estimation over numeric data with personalized local differential privacy  被引量:2

在线阅读下载全文

作  者:Qiao XUE Youwen ZHU Jian WANG 

机构地区:[1]College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China [2]Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004,China [3]School of Cyber Security,Gansu University of Political Science and Law,Lanzhou 730070,China

出  处:《Frontiers of Computer Science》2022年第3期183-192,共10页中国计算机科学前沿(英文版)

基  金:the National Key Research and Development Program of China(2020YFB1005900);the Research Fund of Guangxi Key Laboratory of Trusted Software(kx202034);the Team Project of Collaborative Innovation in Universities of Gansu Province(2017C-16);Collaborative Innovation Center of Novel Software Technology and Industrialization.

摘  要:The fast development of the Internet and mobile devices results in a crowdsensing business model,where individuals(users)are willing to contribute their data to help the institution(data collector)analyze and release useful information.However,the reveal of personal data will bring huge privacy threats to users,which will impede the wide application of the crowdsensing model.To settle the problem,the definition of local differential privacy(LDP)is proposed.Afterwards,to respond to the varied privacy preference of users,resear-chers propose a new model,i.e.,personalized local differential privacy(PLDP),which allow users to specify their own privacy parameters.In this paper,we focus on a basic task of calculating the mean value over a single numeric attribute with PLDP.Based on the previous schemes for mean estimation under LDP,we employ PLDP model to design novel schemes(LAP,DCP,PWP)to provide personalized privacy for each user.We then theoretically analysis the worst-case variance of three proposed schemes and conduct experiments on synthetic and real datasets to evaluate the performance of three methods.The theoretical and experimental results show the optimality of PWP in the low privacy regime and a slight advantage of DCP in the high privacy regime.

关 键 词:personalized local differential privacy mean estimation crowdsensing model 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象