检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕昊 郭江宇[1] 靳文兵[1] 张宾 王宇新 LYU Hao;GUO Jiangyu;JIN Wenbing;ZHANG Bin;WANG Yuxin(North Automatic Control Technology Institute,Taiyuan 030006,China;Second Military Representative Office in Taiyuan,Taiyuan 030006,China)
机构地区:[1]北方自动控制技术研究所,太原030006 [2]驻太原地区第二军代室,太原030006
出 处:《火力与指挥控制》2022年第5期177-182,共6页Fire Control & Command Control
摘 要:为了优化视频信号在复杂网络环境下由于网络拥塞出现的数据丢包等情况,提出了一种基于目标识别的HEVC(high efficiency video coding)分割算法的优化方法,提高了视频编码的压缩效率,并实现了算法在全国产平台上的移植运行。利用深度学习进行目标识别,确定感兴趣区域,再通过指导不同区域采用不同编码单元分割深度,提高整体压缩效率。实验结果表明,该优化方法可以有效提高整体压缩效率,并完成在全国产化平台的运行实现,实现整体技术的自主可控。In order to optimize the data packet loss of the video signal due to network congestion in a complex network environment,an optimization method of the HEVC segmentation algorithm based on target recognition is proposed,which improves the compression efficiency of video coding and realizes that the algorithm is produced nationwide. Porting operation on the platform. First,use deep learning for target recognition and determine the region of interest,and then guide different regions to use different coding units to segment the depth to improve the overall compression efficiency.Experimental results show that the optimization method can effectively improve the overall compression efficiency,and complete the implementation of the national production and chemical platform,and realize the independent control of the overall technology.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229