Minimizing Outage Probability Driven Wireless Backhaul Scheme in Heterogeneous Networks  

在线阅读下载全文

作  者:Zhenxing Li Rui Xie Kai Luo Tao Jiang 

机构地区:[1]Research Center of 6G Mobile Communications,School of Cyber Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China [2]Shanghai Electric Control Research Institute,Shanghai 200092,China

出  处:《China Communications》2022年第6期248-262,共15页中国通信(英文版)

基  金:supported in part by the National Science Foundation of China under Grant 61901185 and Grant 61971205。

摘  要:Heterogeneous networks(Het Nets)attracts a lot of attention due to its high capacity and large coverage for future communication networks.However,with the large-scale deployment of small cells,HetNets bears dramatically increasing backhaul,which leads to a decrease of the outage performance.To improve the outage performance of Het Nets,we propose a wireless backhaul scheme for a two-layer HetNets,which automatically switches the three basic modes of orthogonal multiple access(OMA),nonorthogonal multiple access(NOMA)and cooperative non-orthogonal multiple access(CNOMA).First,we analyze the backhaul capacity and outage performance of these three basic modes.Then,we design the power allocation schemes based on minimizing outage probability for NOMA and CNOMA.Using the designed power allocation schemes,we propose a wireless backhaul scheme that switches the three modes according to the channel quality among different base stations(BSs).Moreover,the closed-form of the corresponding outage probability is derived.Compared with the three basic modes,the proposed wireless backhaul scheme can achieve the best outage performance and a higher backhaul capacity.Finally,all the analytical results are validated by simulations.

关 键 词:Het Nets wireless backhaul NOMA outage probability backhaul capacity 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象