检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭菁 GUO Jing(Department of Philosophy,Dalian University of Technology,Dalian 116024,China)
出 处:《自然辩证法研究》2022年第3期108-114,共7页Studies in Dialectics of Nature
基 金:国家社会科学基金项目“人工智能时代责任主体的伦理建构研究”(20BZX028)。
摘 要:莱布尼茨开创了逻辑数学化的工作,成为数理逻辑的创始者。他以单子论的本体论和唯理主义的认识论为前提,按照方法论上的包含原则、符号对应原则、演绎推理的一致性原则将逻辑数学化,追求逻辑和数在本体论、认识论和方法论的统一。然而莱布尼茨没有完成逻辑数学化的宏大设想,其逻辑数学化存在一定的界限:一方面,单子论取消了量的关系的独立性;另一方面,包含原则导致对项的还原和内涵逻辑的倾向。对莱布尼茨逻辑数学化界限的分析将有助于进一步反思当今科学数学化的合理性和局限性。Leibniz initiated the logical mathematization and became the originator of mathematical logic.On the premises of the ontology of monad and the epistemology of rationalism,he actualized the logical mathematization by the methodology of containing principle,symbol corresponding principle and the consistency principle of deductive inference.He pursued the unification of logic and mathematics in ontology,epistemology and methodology.However,Leibniz did not accomplish his great plan because of the limitations of his logical mathematization.The limitations are on the one hand the premise of monad negating the independence of the quantity relationship,and on the other hand the containing principle leading to the reductionism of terms and the preference of intensional logic.The analysis of the limitations of Leibniz’s logical mathematization would contribute to the further reflection of the rationality or the limits of the mathematization trend of sciences in the contemporary era.
分 类 号:N031[自然科学总论—科学技术哲学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171