检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁艳斌[1] 张城芳[1,2] 黄鹏 董恒 杨敬豪[1] YUAN Yanbin;ZHANG Chengfang;HUANG Peng;DONG Heng;YANG Jinghao(School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,China;School of Civil Engineering,Wuhan Huaxia University of Technology,Wuhan 430223,China)
机构地区:[1]武汉理工大学资源与环境工程学院,武汉430070 [2]武汉华夏理工学院土木建筑工程学院,武汉430223
出 处:《农业机械学报》2022年第4期183-191,共9页Transactions of the Chinese Society for Agricultural Machinery
基 金:湖北省自然科学基金项目(2019CFC873);国家自然科学基金项目(52079101,41701483)。
摘 要:陆地总初级生产力(GPP)是全球碳循环和全球变化研究的关键参数,基于遥感方式是目前陆地生态系统GPP估算的主流方法。为了准确估算全球和区域尺度的陆地GPP,本文通过分析叶绿素荧光与光合作用关系的理论,在GPP-SIF经验线性估算模型的基础上,引入影响植被光合能力和影响冠层SIF发射的因素,构建了适用于未出现严重长期外界胁迫的基于近红外荧光的GPP估算理论模型。结合GOME-2 SIF产品、FLUXNET2015数据集中实测GPP和MODIS相关产品,在不同类型植被进行了验证分析。结果表明:该模型在所有植被类型上的估算精度较经验线性估算模型都有很大的提高,同时本文模型能较好地体现出不同植被类型GPP的季节性变化特征,在全球尺度上的应用也取得了较好的效果。Gross primary productivity is a key parameter for the research of global carbon cycle and global change.The remote sensing-based method is the mainstream approach to estimate GPP of terrestrial ecosystems.Solar-induced chlorophyll fluorescence is directly related to plant photosynthesis,and it is a signal emitted by the photosystem after plants absorb sunlight energy.Solar-induced chlorophyll fluorescence remote sensing can obtain vegetation growth status information in time.On the basis of the GPP-SIF empirical linear estimation model,some factors affecting the photosynthetic capacity and canopy SIF emission were introduced to construct a theoretical model of GPP estimation based on near-infrared fluorescence.The model is a goodremote sensing tool to monitor vegetation without severe long-term external stress.Verification analysis was carried out in different types of vegetation with the GOME-2 SIF products,FLUXNET2015 GPP products and MODIS GPP products.The research results showed that the estimation accuracy of the model on all vegetation types was greatly improved compared with the empirical linear estimation model.At the same time,the model can better reflect the seasonal change characteristics of the different vegetation types represented by each site.The application on the scale also achieved good results.
分 类 号:X87[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249