随机需求下小型网络的交通协调控制  

Traffic Coordination Control of Small Networks under Random Demand

在线阅读下载全文

作  者:罗攀 LUO Pan(Shanghai Pudong Engineering Construction Management Co.,Ltd.,Shanghai 201206,China)

机构地区:[1]上海浦东工程建设管理有限公司,上海201206

出  处:《中国市政工程》2022年第3期81-85,141,共6页China Municipal Engineering

摘  要:交通信号协调控制是缓解城市交通网络拥堵的重要手段,将随机干线交叉口的自适应协调控制的范围扩展到周边影响范围的小型网路中。首先,阐明小型网络的具体定义和结构;其次,对小型网络的随机需求从路网中车辆的到达率、离开率和转向相位差的影响等角度进行分析;最后在小型网络中分交通畅通、拥堵和严重拥堵3种情况,建立相应的小型网络自适应协调控制模型,并得出小型网络中心相邻交叉口和边界交叉口的车均延误模型。以上海市西藏南路—淮海中路交叉口为中心交叉口,向周边路网扩展,形成9个交叉口,进行案例分析。研究结果表明,采用的模型对于中心相邻交叉口的总车均延误时间增加2.2%,边界交叉口的总车均延误时间减少16.6%,整个网络的车均延误时间减少14.4%,具有良好的效果。Traffic signal coordination control is an important means to alleviate urban traffic network congestion.The scope of adaptive coordination control of random arterial intersections is extended to the small networks with its surrounding influence.Firstly,the specific definition and structure of small-scale network are clarified;secondly,the random demand of smallscale network is analyzed from the aspects of arrival rate,departure rate and steering phase difference of vehicles in the network.Finally,the small-scale network is divided into three situations:smooth traffic,congestion&serious congestion,and the corresponding small-scale network adaptive coordination control model is established.Taking the intersection of South Xizang Rd.and Middle Huaihai Rd.in Shanghai as the central intersection,it expands to the surrounding road network to form 9 intersections,and carries out case analysis.The research results show that the adopted model can increase the total vehicle delay time of adjacent intersections in the center by 2.2%,reduce the total vehicle delay time of border intersections by 16.6%,and reduce the average vehicle delay time of the whole network by 14.4%.

关 键 词:随机需求 小型网络 协调控制 到达率 离开率 转向相位差 车均延误时间 

分 类 号:U491.2[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象