检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李理 李向欣 殷敬伟 LI Li;LI Xiangxin;YIN Jingwei(Acoustic Science and Technology Laboratory,Harbin Engineering University,Harbin 150001,China;Key Laboratory of Marine Information Acquisition and Security(Harbin Engineering University),Ministry of Industry and Information Technology,Harbin 150001,China;ollege of Underwater Acoustic Engineering,Harbin Engineering University,Harbin 150001,China)
机构地区:[1]哈尔滨工程大学水声技术重点实验室,哈尔滨150001 [2]哈尔滨工程大学海洋信息获取与安全工信部重点实验室,哈尔滨150001 [3]哈尔滨工程大学水声工程学院,哈尔滨150001
出 处:《电子与信息学报》2022年第6期1974-1983,共10页Journal of Electronics & Information Technology
摘 要:基于机器学习的舰船目标识别近年来已成为水声信号处理领域的一个重要研究方向,但水声目标信号的获取困难,样本量不足和不均衡的问题很容易导致目标分类模型的识别效果不佳。该文提出一种基于条件卷积生成对抗网络的船舶噪声数据分类方法,该方法利用生成对抗学习理论,生成相比于传统数据增强算法非线性特征更强,特征差异更丰富的伪DEMON调制谱数据来缓解训练样本量不足的问题。之后将传统生成对抗网络中的全连层输出替换成更善于解决小样本问题集成分类器,从而降低分类器对于数据量的依赖程度,进一步提高分类模型性能。最终由基于真实样本的实验结果表明,相比于传统数据增强算法和卷积生成对抗网络,该文方法能够更有效提高在样本不足条件下的模型的分类性能。In recent years,ship target recognition based on machine learning has become an important research direction in the field of underwater acoustic signal processing,but the acquisition of underwater acoustic target signal is difficult,and the problem of insufficient sample size and imbalance leads easily to the poor recognition effect of target classification model.A ship noise data classification method based on Generative Admission-Network(GAN)is proposed in this paper.This method uses generative admission-learning theory to generate pseudo-DEMON modulation spectrum data with stronger nonlinear characteristics and richer feature differences compared with traditional data enhancement algorithms to alleviate the problem of insufficient training sample size.Then,the output of the whole connection layer in the traditional generative adversarial network is replaced by an ensemble classifier which is better at solving the problem of small samples,so as to reduce the dependence of the classifier on the amount of data and improve further the performance of the classification model.Finally,experimental results based on real samples show that,compared with traditional data enhancement algorithms and generative adversarial networks,the proposed method can improve the classification performance of models with insufficient samples more effectively.
分 类 号:TN929.3[电子电信—通信与信息系统] TP181[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222