深度强化学习增强的电力系统研究  

Power Systems Enhanced by Deep Reinforcement Learning

在线阅读下载全文

作  者:程琳 唐毅[1,2] 都小利 Cheng Lin;Tang Yi;Du Xiaoli(State Grid Anhui Training Center, Hefei Anhui 230022,China;Anhui Electrical Engineering Professional Technique College, Hefei Anhui 230051, China)

机构地区:[1]国网安徽省电力有限公司培训中心,安徽合肥230022 [2]安徽电气工程职业技术学院,安徽合肥230051

出  处:《山西电子技术》2022年第3期66-67,80,共3页Shanxi Electronic Technology

基  金:国网安徽省电力有限公司培训中心科技项目(2017QC02)。

摘  要:由于电力系统的复杂性、不确定性和数据维度的增加,传统方法在解决决策和控制问题时会遇到瓶颈。因此,解决这些问题的数据驱动方法正在被广泛研究。深度强化学习是数据驱动的方法之一,被认为是真正的人工智能。深度强化学习结合了深度学习的感知能力和强化学习的决策能力。这一研究领域已被广泛应用于解决复杂的顺序决策问题,包括电力系统中的问题。本文首先介绍了深度强化学习的基本思想、模型、算法以及技术。然后介绍了在电力系统中的应用,此外,还讨论了深度强化学习在电力系统中的应用前景和挑战。Due to the complexity and uncertainty of power system and the increase of data dimension,traditional methods encounters bottlenecks in solving decision-making and control problems.Therefore,data-driven approaches to solving these problems are being studied extensively.Deep reinforcement learning is one of the data-driven approaches that are considered to be true artificial intelligence.Deep reinforcement learning combines the perceptual ability of deep learning with the decision-making ability of reinforcement learning.This research area has been widely used to solve complex sequential decision problems,including problems in power systems.This paper first introduces the basic ideas,models,algorithms and techniques of deep reinforcement learning.Then,the application of deep reinforcement learning in power system is introduced.In addition,the application prospect and challenge of deep reinforcement learning in power system are discussed.

关 键 词:深度强化学习 电力系统 智能电网 人工智能 机器学习 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象