检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘乾 鲁云军 陈克斌 韩梦瑶 郭亮[1] LIU Qian;LU Yunjun;CHEN Kebin;HAN Mengyao;GUO Liang(College of Information and Communication, National University of Defense Technology,Wuhan 430010, China)
机构地区:[1]国防科技大学信息通信学院,湖北武汉430010
出 处:《系统工程与电子技术》2022年第7期2201-2210,共10页Systems Engineering and Electronics
基 金:国家社会科学基金(2020-SK-C-104);全军军事类研究生资助课题重点项目(JY2019B071)资助课题。
摘 要:针对复杂作战任务分解中存在的随意性、不确定性问题,综合考虑任务主体能力属性和结构特征等二元约束,提出了一种由子任务集提取(extraction,E)、约束检验(verification,V)、子任务集调整(adjustment,A)等步骤递进循环形成的任务分解EVA方法。首先,构建了全局任务空间,提出基于任务匹配的子任务集提取方法;其次,针对任务主体能力属性和结构特征的二元约束,建立了子任务集调整模型,通过改进精英保留策略,引入任务分解粒度和交叉变异概率动态调整策略,提出了一种引进的非支配排序遗传算法-Ⅱ(improved non-dominated sorting genetic algorithm-Ⅱ,INSGA-Ⅱ)算法;最后,进行仿真实验,验证了算法相较于传统多目标优化算法在解集多样性、收敛性和时间性能上的优势。研究结果表明,所提方法能够使决策者依据任务主体实际自主调控任务分解结果,在一定程度上克服了传统方法过度依赖主观经验,忽略任务主体能力属性、结构特征约束的问题。Aiming at the arbitrariness and uncertainty in the decomposition of complex combat tasks,a extraction-verification-adjustment(EVA)task decomposition method is proposed,which is formed by the extraction,verification,and adjustment of the sub task set,considering the binary constraints such as the capability attributes and structural characteristics of the task subject.First,the global task space is constructed,and the subtask set extraction method based on task matching is proposed.Secondly,according to the binary constraints of the task subject’s ability attributes and structural characteristics,a quantitative adjustment model of subtask sets is established.By improving the elitist retention strategy and introducing task decomposition granularity and the dynamic adjustment strategy of crossover mutation probability,the improved non-dominated sorting genetic algorithm-Ⅱ(INSGA-Ⅱ)algorithm is proposed.Finally,the simulation results verify that INSGA-Ⅱhas the advantages of diversity,convergence in solution set and timeliness performance compared with the traditional optimization algorithms.The results show that the method proposed in this paper enable decision makers to adjust and control the task decomposition results according to the actual situation of the task subject,and overcome the problem that the traditional methods rely on subjective experience and ignore the constraints of the ability attributes and structural characteristics of the task subject.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15