基于改进鲸鱼算法的地理空间数据可视化提取系统设计  被引量:1

Geospatial Data Visual Extraction System Based on Improved Whale Algorithm

在线阅读下载全文

作  者:胡坤霖 温剑锋 徐刚 朱安峰 徐海燕 HU Kun-lin;WEN Jian-feng;XU Gang;ZHU An-feng;XU Hai-yan(School of Computer Science and Engineering,Central South University,Changsha 410083 China;Zhejiang College of Security Technology,Wenzhou 325016 China;School of Geosciences and Info-physics,Central South University,Changsha 410083 China)

机构地区:[1]中南大学计算机学院,湖南长沙410083 [2]浙江安防职业技术学院应急管理学院,浙江温州325016 [3]中南大学地球科学与信息物理学院,湖南长沙410083

出  处:《自动化技术与应用》2022年第6期58-61,共4页Techniques of Automation and Applications

摘  要:数据规模的不断扩大,导致地理空间数据提取在安全性与连续性方面存在一定缺陷,提出基于改进鲸鱼算法的地理空间数据可视化提取系统。利用自组织神经网络模型,经过细致的权值调整,实现数据降维预处理;将鲸鱼算法分为觅食、缩小包围、捕食三个过程,确定每个过程的数学模型,再增加变异、交叉等操作,改进该算法性能;结合算法特点,从客户端、逻辑端与服务器端三方面设置系统模式,完成数据获取、格式转变、数据排序与可视化提取。仿真实验表明,该系统的可视化提取的长宽比性能较好,数据的连续性与安全性得到保障。With the continuous expansion of data scale, there are some defects in the security and continuity of geospatial data extraction.This paper proposes a visualization extraction system of geospatial data based on improved whale algorithm. Using the self-organizing neural network model, after careful weight adjustment, the data dimension reduction preprocessing is realized;the whale algorithm is divided into three processes: foraging, shrinking encirclement and predation, the mathematical model of each process is determined, and then mutation, crossover and other operations are added to improve the performance of the algorithm. Combined with the characteristics of the algorithm, the system mode is set from three aspects of client, logic and server to complete data acquisition, format transformation, data sorting and visual extraction. The simulation results show that the aspect ratio performance of the system is good, and the continuity and security of the data are guaranteed.

关 键 词:鲸鱼算法 地理空间数据 可视化提取 层次化思想 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象