检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张娟飞[1] ZHANG Juanfei(Shaanxi Institute of Technology,Xi'an 710300,China)
机构地区:[1]陕西国防工业职业技术学院,陕西西安710300
出 处:《机械制造与自动化》2022年第3期225-228,共4页Machine Building & Automation
基 金:陕西国防工业职业技术学院2021年度科研计划项目(Gfy21-22)。
摘 要:当前的微裂纹检测方法不能对微裂纹图像进行平滑处理,导致无法有效检测到微裂纹的长度、面积以及圆度。为此,设计一种基于机器视觉的大尺寸薄壁机械零件微裂纹检测方法,对大尺寸薄壁机械零件微裂纹图像进行灰度拉伸,利用邻域均值算法对拉伸后的图像进行平滑处理,进而利用机器视觉理论提取微裂纹图像缺陷特征,通过计算对微裂纹的缺陷特征进行约束处理,完成大尺寸薄壁机械零件的微裂纹检测。测试结果表明:该方法具有较好的检测效果和精准度。To overcome the poor effective detection of the length,area and roundness of micro-crack due to its unsmooth image worked by current detection methods,a micro-crack detection method for large scale thin-walled mechanical parts based on mechanical vision is designed,with which the micro-crack image of large scale thin-walled mechanical parts is gray stretched,the stretched image is smoothed by the neighborhood mean algorithm,the defect characteristics of micro-crack image are extracted by machine vision theory and the defect characteristics of micro-cracks are constrained by calculation so as to complete the micro-crack detection of large size thin-walled mechanical parts.The test results show that the designed method has good detection effect and accuracy.
关 键 词:机器视觉 薄壁机械 微裂纹 邻域均值滤波 灰度拉伸
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26