基于自适应指数蝙蝠和SAE的并行大数据分类  被引量:1

Parallel Big Data Classification Method Based on Adaptive Exponential Bat and Stacked Autoencoder

在线阅读下载全文

作  者:钱真坤 周思吉 QIAN Zhenkun;ZHOU Siji(Logistics Service, Sichuan University of Arts and Science, Dazhou Sichuan 635000, China;Informatization Construction and Service Center, Sichuan University of Arts and Science, Dazhou Sichuan 635000, China)

机构地区:[1]四川文理学院后勤服务处,四川达州635000 [2]四川文理学院信息化建设与服务中心,四川达州635000

出  处:《西南师范大学学报(自然科学版)》2022年第6期8-14,共7页Journal of Southwest China Normal University(Natural Science Edition)

基  金:四川省高校后勤协会2022-2023年度立项课题(20220602).

摘  要:为解决深度学习进行大数据分类时效率低的问题,本文提出一种基于自适应指数蝙蝠和堆叠自编码器(SAE)的并行大数据分类方法.在并行计算框架中,Map阶段使用自适应指数蝙蝠算法进行特征选择,自适应指数加权移动平均值蝙蝠算法(AEB)由指数加权移动平均值(EWMA)和自适应权重策略得到.将选择的特征作为Reduce输入进行大数据分类,Reduce阶段使用AEB算法训练的深度堆叠自动编码器(SAE)进行分类,进一步提高了分类精度.实验结果表明,针对不同的训练数据百分比,本文所提方法在准确度和真正例率(TPR)性能方面优于其他现有方法.A parallel big data classification method based on adaptive exponential bats and SAE has been proposed to solve the problem of low efficiency when classifying big data by deep learning.In the parallel computing framework,AEB algorithm is used to select features in the Map stage.AEB is obtained according to the exponential weighted moving average(EWMA)and adaptive weight strategy.Then the selected features are used as the input of Reduce for big data classification.In the Reduce stage,the deep stacked autoencoders trained by AEB algorithm is used for classification,which further improves the classification accuracy.The experimental results show that the proposed method is superior to other existing methods in terms of accuracy and TPR performance for different percentage of training data.

关 键 词:大数据 MAPREDUCE 自适应指数蝙蝠算法 深度堆叠自动编码器 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象