检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘井莲[1] 于丽萍 吴亚明[1] 李显凯 赵卫绩[1] LIU Jing-lian;YU Li-ping;WU Ya-ming;LI Xian-kai;ZHAO Wei-ji(School of Information Engineering,Suihua University,Suihua 152061,China)
机构地区:[1]绥化学院信息工程学院,黑龙江绥化152061
出 处:《通化师范学院学报》2022年第6期60-65,共6页Journal of Tonghua Normal University
基 金:黑龙江省省属高校基本科研业务费科研项目(KYYWF10236180104,YWK10236200141);黑龙江省大学生创新训练项目(201910236024)。
摘 要:标签传播算法是一种重要的社区发现算法,具有不需要先验知识、时间复杂度低的优点.针对传统标签传播算法随机性强导致社区发现结果稳定性差的问题,提出基于共同邻居相似度的改进标签传播算法LPACN,在选择邻居节点中出现次数最多的标签时,将邻居节点与该节点的相似度一并考虑,降低了标签选择的随机性,提高了算法的稳定性.在4个基准网络数据集上进行了对比实验,实验结果表明基于共同邻居相似度的改进标签传播算法能够得到更好的社区划分.Label propagation is an important community detection algorithm,which doesn′t require prior knowledge and has low time complexity. In view of the poor stability of community discovery results caused by the randomness of traditional label propagation algorithm,an improved label propagation algorithm based on common neighbors similarity is proposed. When choosing the most frequent labels of neighbor nodes,the similarity between neighbor nodes and the current node is considered together,which reduces the randomness of label selection and improves the stability of the algorithm. We evaluate the proposed algorithm on four benchmark networks,and the experimental results show that the improved label propagation algorithm based on common neighbors similarity obtains better community partition results.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222