检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龙立 郑山锁[2] 杨勇 周炎 LONG Li;ZHENG Shansuo;YANG Yong;ZHOU Yan(College of Architecture and Civil Engineering,Chengdu University,Chengdu 610106,Sichuan,China;School of Civil Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,Shaanxi,China;Northwest Research Institution of Engineering and Design,Xi'an 710003,Shaanxi,China;College of Civil Engineering and Architecture,China Three Gorges University,Yichang 443002,Hubei,China)
机构地区:[1]成都大学建筑与土木工程学院,四川成都610106 [2]西安建筑科技大学土木工程学院,陕西西安710055 [3]西北综合勘察设计研究院,陕西西安710003 [4]三峡大学土木与建筑学院,湖北宜昌443002
出 处:《地震研究》2022年第3期352-361,共10页Journal of Seismological Research
基 金:国家重点研发计划课题项目(2019YFC1509302)资助.
摘 要:为制定合理的城市供水管网震后修复决策,提升城市供水管网抗震韧性,通过定义供水管网水力满意度指标和震损管线水力重要度指标,提出了供水管网震后两阶段修复策略:第一阶段保证尽量多的用户节点供水,以水力动态重要度作为管线重要度指标修复爆管管线;第二阶段以最快提升管网韧性指数为原则,以水力静态重要度作为管线重要度指标修复渗漏管线。综合考虑管网水力恢复指数、抢修时间和抢修成本,建立多目标优化调度模型,并利用遗传算法实现了多目标优化调度模型优化求解,将其应用于某小型供水管网进行算例分析。结果表明:基于多目标优化调度模型计算得到的总抢修时间、总抢修成本及水力恢复指数与对应单目标优化调度模型的最优结果分别相差0.06%、0.03%、2%。基于多目标优化调度模型的抢修调度方案相较于基于水力恢复指数单目标优化调度模型的抢修调度方案,管网韧性指数更高,是一种高效、低成本且能获得较高水力恢复指数的修复方案。In order to make reasonable decisions for post-earthquake repair of the urban water supply networks and improve the networks'seismic resilience,a service satisfaction index of the water supply and an importance index of the earthquake-damaged pipelines are defined and a two-stage recovery strategy for the water supply networks after the earthquake is proposed.In the first stage,to ensure the water supply for as many user nodes as possible,the dynamic importance of water supply is set as the importance index for repairing the burst pipeline.In the second stage,focusing on fastest improving the networks'resilience index,the static importance of water supply is set as the importance index for repairing the leaking pipeline.A multi-objective optimal regulation model that involves the hydraulic recovery index,repair time and repair cost of the networks is established,and the genetic algorithm is used to solve the multi-objective optimal regulation model.The model is applied to a small water supply network for case study,and the results show that the total repair time,total repair cost and hydraulic recovery index calculated based on the multi-objective optimal regulation model differ from the corresponding optimal results from the single objective optimal regulation model by 0.06%,0.03%and 2%,respectively.The plan for emergency repair and regulation based on multi-objective optimal regulation model produces a higher resilience index for pipe networks than the plan does based on single objective optimal regulation model that only involves hydraulic recovery index.This plan is high-efficient,low-cost and helps to obtain a high hydraulic recovery index.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.189.148