检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李蒋[1] LI Jiang(Suzhou Institute of Construction&Communications,Suzhou 215100,China)
机构地区:[1]苏州建设交通高等职业技术学校,江苏苏州215100
出 处:《汽车电器》2022年第6期4-7,共4页Auto Electric Parts
摘 要:随着《智能汽车创新发展战略》的发布,国家大力发展智能网联汽车势在必行。在自动驾驶技术中,复杂环境中目标物体的识别和判别是一项高难度的挑战,也是需要解决的重点任务之一。本文主要针对汽车智能化设计领域占有重要基础地位的图像识别功能,利用深度学习框架PyTorch和YOLOv3算法对于交通信号灯的判定进行学习训练,最终对获取的交通路况实景图进行识别,取得一定的实际检测效果,以期推动汽车智能化设计领域的技术创新和突破。With the release of the“Smart Vehicle Innovation Development Strategy”,it is imperative for the country to vigorously develop intelligent networked vehicles.In autonomous driving technology,the recognition and discrimination of target objects in complex environments is a difficult challenge and one of the key tasks that need to be solved.This article mainly focuses on the image recognition function that occupies an important basic position in the field of automotive intelligent design.The deep learning framework PyTorch and YOLOv3 algorithms learn and train on the judgment of traffic lights,and finally recognize the acquired real-life maps of traffic conditions,and obtain certain actual detection results,in order to promote technological innovation and breakthroughs in the field of intelligent vehicle design.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.91.183