光伏电池缺陷红外热成像检测与图像序列处理  被引量:5

Infrared Thermography Detection and Images Sequence Processing for Defects in Photovoltaic Cells

在线阅读下载全文

作  者:卜迟武[1] 刘涛 李锐 刘国增 唐庆菊 Bu Chiwu;Liu Tao;Li Rui;Liu Guozeng;Tang Qingju(College of Light Industry,Harbin University of Commerce,Harbin,Heilongjiang 150028,China;School of Astronautics,Harbin Institute of Technology,Harbin,Heilongjiang 150001,China;School of Mechanical Engineering,Heilongjiang University of Science and Technology,Harbin,Heilongjiang 150022,China)

机构地区:[1]哈尔滨商业大学轻工学院,黑龙江哈尔滨150028 [2]哈尔滨工业大学航天学院,黑龙江哈尔滨150001 [3]黑龙江科技大学机械工程学院,黑龙江哈尔滨150022

出  处:《光学学报》2022年第7期110-116,共7页Acta Optica Sinica

基  金:国家自然科学基金面上项目(51775175);黑龙江省自然科学基金(LH2021E088);黑龙江省省院合作项目(YS18A18)。

摘  要:作为光伏电站的主要组成部分,光伏电池中存在隐裂、划痕、热点和断栅等缺陷,这些缺陷影响着电池的性能和电站的运行状况,因此开展光伏电池的缺陷检测是至关重要的。建立脉冲电致红外热成像(PEIT)实验系统,使用该系统开展含有不同类型缺陷的光伏电池的检测实验并采集红外热图像序列。采用线性判别分析(LDA)和二次判别分析(QDA)两种监督学习算法来处理热图像序列,并与主成分分析(PCA)和多项式拟合相关系数(FCC)两种传统处理算法进行比较。实验结果表明,PEIT算法可以对光伏电池的缺陷进行有效检测,QDA算法在信噪比、信息熵和均方误差三个指标上均优于LDA、PCA和FCC算法,可以实现对光伏电池各类缺陷的有效识别。As the main component of photovoltaic power station,photovoltaic cells have defects,such as hidden cracks,scratches,hot spots,and broken gates,which affect the performance of photovoltaic cells and the operation status of photovoltaic power stations,so it is very important to carry out defect detection of photovoltaic cells.A pulsed electric infrared thermography(PEIT) experimental system is established,and the system is used to carry out detection experiments of photovoltaic cells with different types of defects and to collect infrared thermography sequences.Two kinds of supervised learning algorithms,linear discriminant analysis(LDA) and quadratic discriminant analysis(QDA),are used to process thermography sequences,and compared with principal component analysis(PCA) and fitting correlation coefficient(FCC).The experimental results show that the PEIT algorithm can effectively detect the defects of photovoltaic cells,and the QDA algorithm is better than LDA,PCA,and FCC algorithms in signal-to-noise ratio,information entropy,and mean square error,and it can effectively identify all kinds of defects in photovoltaic cells.

关 键 词:成像系统 脉冲电致红外热成像 光伏电池缺陷 监督学习 缺陷检测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象