Machine-learning-based high-speed lensless large-field holographic projection using double-sampling Fresnel diffraction method  被引量:1

在线阅读下载全文

作  者:Chentianfei Shen Tong Shen Qi Chen Qinghan Zhang Jihong Zheng 沈陈天飞;申桐;陈祺;张磬瀚;郑继红(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200433,China)

机构地区:[1]School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200A33,China

出  处:《Chinese Optics Letters》2022年第5期1-6,共6页中国光学快报(英文版)

基  金:This work was supported by the National Natural Science Foundation of China(No.61975122);the National Key Research and Development Program of China(No.2018YFA0701802).

摘  要:Machine learning can effectively accelerate the runtime of a computer-generated hologram.However,the angular spectrum method and single fast Fresnel transform-based machine learning acceleration algorithms are still limited in the field-of-view angle of projection.In this paper,we propose an efficient method for the fast generation of large field-of-view holograms combining stochastic gradient descent(SGD),neural networks,and double-sampling Fresnel diffraction(DSFD).Compared with the traditional Gerchberg-Saxton(GS)algorithm,the DSFD-SGD algorithm has better reconstruction quality.Our neural network can be automatically trained in an unsupervised manner with a training set of target images without labels,and its combination with the DSFD can improve the optimization speed significantly.The proposed DSFD-Net method can generate 2000-resolution holograms in 0.05 s.The feasibility of the proposed method is demonstrated with simulations and experiments.

关 键 词:computer-generated hologram holographic display machine learning 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象