检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chentianfei Shen Tong Shen Qi Chen Qinghan Zhang Jihong Zheng 沈陈天飞;申桐;陈祺;张磬瀚;郑继红(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200433,China)
出 处:《Chinese Optics Letters》2022年第5期1-6,共6页中国光学快报(英文版)
基 金:This work was supported by the National Natural Science Foundation of China(No.61975122);the National Key Research and Development Program of China(No.2018YFA0701802).
摘 要:Machine learning can effectively accelerate the runtime of a computer-generated hologram.However,the angular spectrum method and single fast Fresnel transform-based machine learning acceleration algorithms are still limited in the field-of-view angle of projection.In this paper,we propose an efficient method for the fast generation of large field-of-view holograms combining stochastic gradient descent(SGD),neural networks,and double-sampling Fresnel diffraction(DSFD).Compared with the traditional Gerchberg-Saxton(GS)algorithm,the DSFD-SGD algorithm has better reconstruction quality.Our neural network can be automatically trained in an unsupervised manner with a training set of target images without labels,and its combination with the DSFD can improve the optimization speed significantly.The proposed DSFD-Net method can generate 2000-resolution holograms in 0.05 s.The feasibility of the proposed method is demonstrated with simulations and experiments.
关 键 词:computer-generated hologram holographic display machine learning
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249