检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕靖 齐海迪 李宝德 LV Jing;QI Hai-di;LI Bao-de(College of Transportation Engineering,Dalian Maritime University,Dalian 116026,Liaoning,China)
机构地区:[1]大连海事大学,交通运输工程学院,辽宁大连116026
出 处:《交通运输系统工程与信息》2022年第3期247-254,266,共9页Journal of Transportation Systems Engineering and Information Technology
基 金:国家自然科学基金(71974023);国家社科基金重大研究专项基金(18VHQ005);中央高校基本科研业务费专项资金(313209302)。
摘 要:为有效应对海盗袭击事件,减少可能产生的损失,本文提出一种新的基于扩展置信规则库(EBRB)联合优化的海盗袭击事件风险预测模型。通过引入Relief F算法和差分进化算法,从结构和参数两个角度对EBRB系统进行优化,以确保EBRB系统具有最优的参数数量和取值,利用实际海盗事件数据集进行模型验证。结果显示,联合优化的EBRB系统预测结果与实际情况的拟合效果较好,相对于初始的EBRB系统,联合优化EBRB系统将海盗事件的风险预测准确性提高了60%。此外,与现有其他预测模型对比发现,基于联合优化EBRB系统的预测模型在提高预测准确性方面具有一定的优势。To effectively predict pirate attacks and reduce possible losses,this paper proposes a pirate attacks risk prediction model based on the joint optimization of extended belief rule base(EBRB).By introducing the Relief F algorithm and differential evolution algorithm,this study optimizes the EBRB system from the perspective of structure and parameters,which ensures the EBRB system has the optimal number and value of parameters.The real pirate event data set is used for the case study.The results show that the reasoning results of the jointly optimized EBRB system match well with the actual situation.Compared with the initial EBRB system,the proposed method improves the risk prediction accuracy of pirate events by 60%.In addition,compared with the traditional prediction models,the prediction model based on the joint optimization of EBRB shows certain advantages in improving the prediction accuracy.
关 键 词:水路运输 风险预测 扩展置信规则库 海盗袭击 海上运输安全
分 类 号:U698[交通运输工程—港口、海岸及近海工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.251.83