检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘国才[1,2] 顾冬冬 刘骁 刘劲光 刘焰飞 张毛蛋 Liu Guocai;Gu Dongdong;Liu Xiao;Liu Jinguang;Liu Yanfei;Zhang Maodan(Cllege of Eletrical and Information Engineering,Huran Uniersiy,Changsha 410082,China;National Eninering Research Center for Robot Visual Pereption and Control Technologr,Changsha 410082,China)
机构地区:[1]湖南大学电气与信息工程学院,长沙410082 [2]机器人视觉感知与控制技术国家工程研究中心,长沙410082
出 处:《中国生物医学工程学报》2022年第2期224-237,共14页Chinese Journal of Biomedical Engineering
基 金:国家自然科学基金(62071176,61671204,61271382);湖南省科技计划重点研发专项(2016WK2001)。
摘 要:癌症已成为严重威胁人类健康的主要公共卫生问题。60%~70%的癌症患者需要进行放射治疗。调强放疗是当前主要的临床放疗技术。对近几年基于深度学习的影像分析与转换方法在肿瘤调强放疗计划中的应用进展及关键技术进行综述,包括计算机断层扫描(CT)、锥形束CT(CBCT)、磁共振成像(MRI)、正电子发射断层扫描(PET)引导的肿瘤调强放疗技术应用现状与发展趋势,肿瘤CT/CBCT/MRI/PET影像放疗靶区分割、影像配准以及转换深度卷积神经网络、生成对抗网络的有监督或无监督学习方法,并对未来的研究方向进行展望。Cancer is a common problem that seriously threatens human health. 60% to 70% of cancer patients need radiotherapy. Currently intensity modulated radiotherapy(IMRT) is one main radiotherapy technique that is widely applied in clinics. This paper reviewed deep learning methods, key technologies and future directions for IMRT, including clinical CT/CBCT/MRI/PET-guided IMRT technologies, and supervised or unsupervised deep convolutional neural networks or generative adversarial networks for the segmentation, registration and image-to-image translation of CT/CBCT/MRI/PET images of tumors.
关 键 词:医学图像分割 医学图像配准 医学图像转换 深度学习 肿瘤调强放疗
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.185.110