检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶翔宇 李强[1,3] 郭禹含[1,2] 梁廖逢[1,2] 王中根 YE Xiangyu;LI Qiang;GUO Yuhan;LIANG Liaofeng;WANG Zhonggen(Key Laboratory ofWater Cycle and Related Land Surface Processes,Institute of Geographic Sciences and Natural Resources Research,CAS,Beijing 100101,China;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China;Qingdao University,Qingdao 266071,Shandong,China;National Institute of Natural Hazards,Ministry of Emergency Management of the People's Republic of China,Beijing 100085,China)
机构地区:[1]中国科学院地理科学与资源研究所陆地水循环及地表过程重点实验室,北京100101 [2]中国科学院大学资源与环境学院,北京100049 [3]青岛大学,山东青岛266071 [4]应急管理部国家自然灾害防治研究院,北京100085
出 处:《地理科学进展》2022年第4期731-740,共10页Progress in Geography
基 金:第二次青藏高原综合科学考察研究项目(2019QZKK0903);国家重点研发计划项目(2017YFB0203101)。
摘 要:传统分布式水文模型采用串行计算模式,其计算能力无法满足大规模水文精细化、多要素、多过程耦合模拟的需求,亟需并行计算的支持。进入21世纪后,计算机技术的飞速发展和并行环境的逐步完善,为分布式水文模型并行计算提供了软硬件支撑。论文从并行环境、并行算法2个方面对已有研究进行总结概括,分析了不同并行环境和并行算法的优势与不足,并提出提高模型并行效率的手段,即合理分配进程/线程数缩减通信开销,采用混合并行环境增强模型可扩展性,空间或时空离散化提高模型的可并行性及动态分配计算任务、平衡工作负载等。最后,论文对高性能并行分布式模型的未来研究方向进行展望。Traditional distributed hydrological models adopt the serial computing mode and the computing power cannot meet the requirements of large-scale refined,multi-element,and multi-process coupling hydrological simulation,thus the support of parallel computing is urgently needed.In the 21st century,the rapid development of computer technology and the gradual improvement of the parallel environment have provided hardware and software support for the parallel computing of distributed hydrological models.This article summarized the existing research from the two aspects of parallel environment and parallel algorithm,analyzed the advantages and disadvantages of different parallel environments and parallel algorithms,and proposed several methods to improve the parallel efficiency of the models,such as rationally allocating the number of processes/threads to reduce communication overhead,adopting a hybrid parallel environment to enhance model scalability,spatial or spatiotemporal discretization to improve model parallelism,and dynamically allocating computing tasks to balance workloads,and so on.Finally,this article examined future research directions of highperformance parallel distributed models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.206.240