检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yanshan LI Li ZHOU Fan XU Shifu CHEN
机构地区:[1]ATR National Key Laboratory of Defense Technology,Shenzhen University,Shenzhen 518060,China [2]Guangdong Key Laboratory of Intelligent Information Processing,Shenzhen University,Shenzhen 518060,China
出 处:《Chinese Journal of Aeronautics》2022年第5期204-219,共16页中国航空学报(英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.61771319,62076165 and 61871154);the Natural Science Foundation of Guangdong Province,China(No.2019A1515011307);Shenzhen Science and Technology Project,China(Nos.JCYJ20180507182259896 and 20200826154022001);the other project(Nos.2020KCXTD004 and WDZC20195500201)。
摘 要:Although Convolutional Neural Networks(CNNs)have significantly improved the development of image Super-Resolution(SR)technology in recent years,the existing SR methods for SAR image with large scale factors have rarely been studied due to technical difficulty.A more efficient method is to obtain comprehensive information to guide the SAR image reconstruction.Indeed,the co-registered High-Resolution(HR)optical image has been successfully applied to enhance the quality of SAR image due to its discriminative characteristics.Inspired by this,we propose a novel Optical-Guided Super-Resolution Network(OGSRN)for SAR image with large scale factors.Specifically,our proposed OGSRN consists of two sub-nets:a SAR image SuperResolution U-Net(SRUN)and a SAR-to-Optical Residual Translation Network(SORTN).The whole process during training includes two stages.In stage-1,the SR SAR images are reconstructed by the SRUN.And an Enhanced Residual Attention Module(ERAM),which is comprised of the Channel Attention(CA)and Spatial Attention(SA)mechanisms,is constructed to boost the representation ability of the network.In stage-2,the output of the stage-1 and its corresponding HR SAR images are translated to optical images by the SORTN,respectively.And then the differences between SR images and HR images are computed in the optical space to obtain feedback information that can reduce the space of possible SR solution.After that,we can use the optimized SRUN to directly produce HR SAR image from Low-Resolution(LR)SAR image in the testing phase.The experimental results show that under the guidance of optical image,our OGSRN can achieve excellent performance in both quantitative assessment metrics and visual quality.
关 键 词:SAR image SUPER-RESOLUTION Optical image Attention mechanisms Convolutional Nerual Networks(CNNs)
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15