检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋彦廷 吴钰洁 JIANG YanTing;WU YuJie(Chengdu Aeronautic Polytechnic,Chengdu 610100,P.R.China;School of Chinese Language and Literature,Beijing Normal University,Beijing 100875,P.R.China)
机构地区:[1]成都航空职业技术学院,成都610100 [2]北京师范大学文学院,北京100875
出 处:《数字图书馆论坛》2022年第5期39-46,共8页Digital Library Forum
摘 要:给英文文献自动标注《中图法》分类号,能减轻图书馆与文献数据库工作人员的负担,促进跨语言知识检索与中外知识交流。面对既有的标注《中图法》分类号的英文文献数据不足的问题,本文面向预训练语言模型BERT,提出中文文献机器翻译、原始英文文本插入标点或语法词以增强分类模型泛化能力等文本增强策略,以及《美国国会图书馆分类法》到《中图法》的类目映射策略扩充文本数据。实验表明,3种策略均能有效提高文本分类效果。通过上述策略,分类的正确率与宏F1值分别提升约6.1个百分点与7.4个百分点。最后开发并发布了一个小程序,实现给英文文献自动、批量标注《中图法》20类一级分类号的功能。Automatic Chinese Library Classification labeling can reduce library or literature database staff’s burden,promote cross-lingual knowledge retrieval and knowledge communication at home and abroad.Confronting lacking of English literature annotated with Chinese Library Classification label,faced with the BERT model,this paper proposes text augmentation strategies which include Chinese literature translating to English and punctuation or grammatical words inserting to improve generalization ability of models.In addition,it proposes the classification mapping from Library of Congress Classification to Chinese Library Classification to augment text data.Experiments show that these 3 strategies can optimize the performance of text classification.After these strategies,accuracy and Macro F1 score of classification model have respectively increased by 6.1%and 7.4%.Finally,this paper developed and released a programme,which implements automatic and large-batch 20-class Chinese Library Classification labeling for English literature.
关 键 词:预训练语言模型 《中国图书馆分类法》 机器翻译 文本增强 类目映射
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44