基于事理图谱的游记文本知识发现——以康养旅游为例  被引量:9

Travelogues Knowledge Discovery Based on Travel ELG——Take Health Tourism as an Example

在线阅读下载全文

作  者:邓君[1] 彭珺 孙绍丹 鞠海龙 Deng Jun;Peng Jun;Sun Shaodan;Ju Hailong(School of Business Management,Jilin University,Changchun 130012,China;School of Business,Guilin University of Technology,Guilin 541000,China)

机构地区:[1]吉林大学商学与管理学院,吉林长春130012 [2]桂林理工大学商学院,广西桂林541000

出  处:《现代情报》2022年第7期105-113,共9页Journal of Modern Information

基  金:国家自然科学基金地区项目“网络关系能力、吸收能力与双元创新:基于网络关系异质性视角的组织间知识转移研究”(项目编号:72064010)。

摘  要:[目的/意义]本文利用叙事图谱化的方式对游记文本信息资源进行有效的知识组织和挖掘,直观、生动地展示旅游事件知识之间的关联与结构,为推行旅游用户需求精准化知识服务提供参考与启示。[方法/过程]网络康养游记文本为实验数据源。采用基于规则模板的顺承关系与事件抽取方法,结合基于Doc2vec和K-Means的语义相似度聚类实现事件泛化,最后利用社会网络工具构建康养旅游事理图谱对游客行为过程描绘和分析。[结果/结论]通过构建事理图谱能够快速揭示康养旅游的热门目的地、游客行为偏好特征以及趋势等。根据研究结果为旅游相关机构在康养行程设计上提供4类方案,并在产品开发、服务优化等方面提出了建议。[Purpose/Significance]This paper uses the method of narrative mapping to effectively organize and mine the knowledge resources of travelogues,visually and vividly display the association and structure of knowledge of tourism events,and provide reference and inspiration for the implementation of accurate knowledge services for tourism users needs.[Method/Process]Travelogues of health tourism were used as experimental data sources.The sequential relation and event extraction method based on rule template were adopted.Event generalization was realized by semantic similarity clustering based on Doc2vec and K-means.Finally,the social network tool was used to construct the psychological map of health tourism to describe and analyze the behavior process of tourists.[Results/Conclusion]The popular destinations,behavioral preferences and trends of tourists can be quickly revealed by constructing the causal map.According to the results of the study,four kinds of schemes are provided for tourism related institutions in the design of recreational travel,and suggestions are put forward in the aspects of product development and service optimization.

关 键 词:游记文本 旅游知识服务 事理图谱 知识组织 知识发现 

分 类 号:G250.73[文化科学—图书馆学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象