检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:房肖 温广辉 付俊杰 吕跃祖 栾萌 郑德智 FANG Xiao;WEN Guang-hui;FU Jun-jie;LV Yue-zu;LUAN Meng;ZHENG De-zhi(School of Mathematics,Southeast University,Nanjing 211189,China;Advanced Research Institute of Multidisciplinary Sciences,Beijing Institute of Technology,Beijing 100081,China)
机构地区:[1]东南大学数学学院,南京江苏211189 [2]北京理工大学前沿交叉科学研究院,北京100081
出 处:《控制工程》2022年第3期492-497,共6页Control Engineering of China
基 金:中央军委装备发展部装备预先研究领域基金项目(61403120411)。
摘 要:为提高无人艇集群海面对抗的作战效能,通过分析敌我双方无人艇的目标价值和毁伤概率,利用非合作博弈的思想在完全信息框架下建立了敌我双方无人艇集群博弈对抗模型。综合考虑目标价值收益和自身损伤代价,构建了敌我双方无人艇集群的收益矩阵。通过设计纳什均衡搜索算法求解双矩阵博弈的纳什均衡,为无人艇集群提供均衡意义下的最优作战位置。在纳什均衡位置下,敌我双方都无法通过改变己方无人艇的作战位置来获得更大收益。通过仿真算例验证了利用博弈思想选取的纳什均衡意义下的作战策略较其他既定策略能够提高无人艇集群的作战效能。In order to improve the combat effectiveness of unmanned surface vessel(USV) group in sea surface confrontation,by analyzing the target value and destroy probability of the USV on both sides and using the non-cooperative game theory,the game model of the USV group confrontation is established under the complete information framework.Considering the target value profit and self-damage cost,the payoff matrices of USV groups on both sides are constructed.The Nash equilibrium search algorithm is designed to seek the Nash equilibrium of the double matrix game and find the optimal combat position in the sense of equilibrium for the USV groups.In the Nash equilibrium position,no USV group can gain more profits by changing the combat position of their own USV s.Through the simulation example,it is verified that the combat strategy in the sense of Nash equilibrium selected by the game theory can improve the combat effectiveness of the USV group compared with other established strategies.
分 类 号:O225[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.53.191