Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network  被引量:1

在线阅读下载全文

作  者:Hai-Yang Meng Zi-Xiang Xu Jing Yang Bin Liang Jian-Chun Cheng 孟海洋;徐自翔;杨京;梁彬;程建春(Key Laboratory of Modern Acoustics,MOE,Institute of Acoustics,Department of Physics,Nanjing University,Nanjing 210093,China;Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China)

机构地区:[1]Key Laboratory of Modern Acoustics,MOE,Institute of Acoustics,Department of Physics,Nanjing University,Nanjing 210093,China [2]Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

出  处:《Chinese Physics B》2022年第6期470-475,共6页中国物理B(英文版)

基  金:supported by the National Key Research and Development Program of China(Grant No.2017YFA0303700);the National Natural Science Foundation of China(Grants Nos.12174190,11634006,12074286,and 81127901);the Innovation Special Zone of the National Defense Science and Technology,High-Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures,and the Priority Academic Program Development of Jiangsu Higher Education Institutions。

摘  要:Accurate and fast prediction of aerodynamic noise has always been a research hotspot in fluid mechanics and aeroacoustics.The conventional prediction methods based on numerical simulation often demand huge computational resources,which are difficult to balance between accuracy and efficiency.Here,we present a data-driven deep neural network(DNN)method to realize fast aerodynamic noise prediction while maintaining accuracy.The proposed deep learning method can predict the spatial distributions of aerodynamic noise information under different working conditions.Based on the large eddy simulation turbulence model and the Ffowcs Williams-Hawkings acoustic analogy theory,a dataset composed of 1216samples is established.With reference to the deep learning method,a DNN framework is proposed to map the relationship between spatial coordinates,inlet velocity and overall sound pressure level.The root-mean-square-errors of prediction are below 0.82 dB in the test dataset,and the directivity of aerodynamic noise predicted by the DNN framework are basically consistent with the numerical simulation.This work paves a novel way for fast prediction of aerodynamic noise with high accuracy and has application potential in acoustic field prediction.

关 键 词:aerodynamic noise prediction deep neural network aeroacoustics 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] O357.5[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象