检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田颖[1] 杨利明 郜占旭 邵文婷 赵茂翔 王太勇[1] Tian Ying;Yang Liming;Gao Zhanxu;Shao Wenting;Zhao Maoxiang;Wang Taiyong(School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)
出 处:《天津大学学报(自然科学与工程技术版)》2022年第10期1008-1015,共8页Journal of Tianjin University:Science and Technology
基 金:国家自然科学基金资助项目(51975407,51975402);宁波市科技创新2025重大专项(2019B10075).
摘 要:针对机器视觉技术在立铣刀侧刃磨损检测过程中,面对刀尖结构破损缺失或月牙洼结构等典型工况下出现的刀尖区域结构缺失、图像信息不完整等问题,提出一种线激光边缘检测与机器视觉相结合的轮廓获取方法.分析导致刀尖区域图像信息缺失的主要原因是侧刃的螺旋分布特性及实际拍摄条件中复杂光照等.因此,本文提出一种图像拼接策略对捕捉到的磨损区域不同光强下的原始照片进行预处理,选取弱光下的刀尖区域和强光下的均匀磨损区域作为数据源;对该数据源采用组合型阈值分割的方法进行轮廓提取,拼接后获得较为完整的刀具磨损区域图;为补充准确的刀尖区域缺失信息,利用线激光检测数据进行补偿,从而获得更加完整和丰富的刀具磨损区域信息.设计并搭建了机器视觉和线激光相结合的立铣刀侧刃磨损检测实验装置,对两种检测方法的实验数据进行采集,实现了线激光在刀尖区域的检测数据对图像数据中的缺失信息进行补偿.最后,通过实际铣削加工实验,获取典型刀具磨损状态实验样本,对文中所提检测方法和实验装置进行验证.结果表明该装置能够获取更完善的磨损区域轮廓信息,给出精确的刀具磨损参数和磨损区域的全面评价,最大磨损值的测量精度高于98%,最大误差不超过5μm.In this paper,a solution is proposed for the missing tooltip structure and incomplete image information problems in the machine vision technology process during the side edge wear detection of end milling.These problems can be a result of the tooltip structure damage or crescent crater structure.The proposed solution is a contour acquisition method combining line laser edge detection and machine vision.Analysis of the main reasons for the lack of image information in the tooltip area led to the spiral distribution characteristics of the side edge and complex lighting in actual shooting conditions.Therefore,an image stitching strategy is proposed to preprocess the captured original photos of the wear area under various light intensities and select the tooltip area under low light and the uniformly worn area under strong light as the data source.The combined threshold segmentation method is used for contour extraction.A relatively complete tool wear area map is obtained after stitching to supplement the accurate missing information of the tooltip area.Additionally,line laser detection data is used to compensate and obtain a more complete and rich tool wear area information.An end milling side edge wear detection experimental device that combines machine vision and line laser is designed and built.Experimental data of the two detection methods are collected.Then,line laser detection data in the tooltip area,which is missing from image data,is compensated.Finally,through actual milling process experiments,we obtain experimental samples of typical tool wear conditions to verify the detection methods and experimental devices mentioned in the article.The results show that the device can obtain complete wear area profile information and provide accurate tool wear parameters and a comprehensive evaluation of the wear area.The measurement accuracy of the wear value is higher than 98%,and the maximum error does not exceed 5μm.
分 类 号:TG714[金属学及工艺—刀具与模具] TH69[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13