基于改进被囊群算法的露天矿无人驾驶卡车运输调度  被引量:5

Unmanned truck transportation scheduling in open-pit mines based on improved tunicate swarm algorithm

在线阅读下载全文

作  者:李在友 孙艳斌 王晓光 陈永 刘光伟[2] 郭直清 LI Zaiyou;SUN Yanbin;WANG Xiaoguang;CHEN Yong;LIU Guangwei;GUO Zhiqing(Shenhua Beidian-Shengli Energy Co.,Ltd.,Xilinhot 026000,China;College of Mines,Liaoning Technical University,Fuxin 123000,China)

机构地区:[1]神华北电胜利能源有限公司,内蒙古锡林浩特026000 [2]辽宁工程技术大学矿业学院,辽宁阜新123000

出  处:《工矿自动化》2022年第6期87-94,127,共9页Journal Of Mine Automation

基  金:国家自然科学基金资助项目(51974144);辽宁省“揭榜挂帅”科技攻关项目(2021JH1/10400011);辽宁省高等学校基本科研项目(LJKZ0340)。

摘  要:针对露天矿无人驾驶卡车运输调度问题,以无人驾驶卡车燃油费用、固定启用费用、故障维修费用及网络基站建设与维护费用之和最小为目标函数,并以采矿场开采量、破碎场破碎量、卡车数量、卡车运输工作量为约束条件,建立了露天矿无人驾驶卡车运输调度优化模型。针对被囊群算法存在全局勘探和局部开采能力不平衡的问题,提出了一种基于Singer映射和参数位置自适应更新机制的改进被囊群算法(ITSA),并将其用于求解露天矿无人驾驶卡车运输调度优化模型。该算法引入Singer映射用于增强初始被囊种群在解空间中的分布性,加快压缩解空间大小,从而提高算法收敛速度;通过参数位置自适应更新机制调节被囊个体与最优被囊个体位置,以增大解空间的搜索范围,从而使算法跳出局部最优。仿真结果表明:与灰狼优化算法(GWO)、鲸鱼优化算法(WOA)、原子搜索优化算法(ASO)及被囊群算法(TSA)4种群智能优化算法相比,ITSA具有更好的收敛精度、收敛速度和稳定性能;在单峰基准函数上,ITSA的各项评价指标远优于其他4种算法,表明ITSA具有更好的局部开采能力;在多峰基准函数上,ITSA的各项评价指标表现出更好的寻优性能,表明ITSA具有更好的全局勘探性能。实际应用场景表明,ITSA用于求解无人驾驶卡车运输调度优化模型时具有更快的收敛速度和更高的收敛精度,且减少了卡车运输费用和运输距离。In order to solve the problem of unmanned truck transportation scheduling in open-pit mines, the minimum sum of fuel cost, fixed start-up cost, breakdown maintenance cost, and network base station construction and maintenance cost are taken as the objective functions. The mining amount of mining station,crushing amount of crushing station, truck number and truck transportation workload are taken as the constraint conditions. The optimization model of unmanned truck transportation scheduling in open-pit mines is established.To solve the problem of imbalance between global exploration and local mining ability in the tunicate swarm algorithm, an improved tunicate swarm algorithm(ITSA) based on Singer mapping and adaptive updating mechanism of parameter position is proposed. And it is applied to solve the optimization model of unmanned truck transportation scheduling in open-pit mines. Singer mapping is introduced to enhance the distribution of the initial tunicate swarm in the solution space and accelerate the compression of the solution space, thus improving the convergence speed of the algorithm. Through the adaptive updating mechanism of parameter position, the positions of the tunicate and the optimal tunicate are adjusted to increase the search range of the solution space.Therefore, the algorithm jumps out of the local optimization. The simulation results show that ITSA has better convergence precision, convergence speed and stability compared with the four population intelligent optimization algorithms of grey wolf optimization algorithm(GWO), whale optimization algorithm(WOA), atom search optimization algorithm(ASO) and tunicate swarm algorithm(TSA). In the unimodal benchmark function, the evaluation indexes of ITSA are far better than those of the other four algorithms, which shows that ITSA has better local mining capacity. In the multi-peak benchmark function, the evaluation indexes of ITSA show better optimization performance, which indicates that ITSA has better global exploration performance. The practi

关 键 词:露天矿运输 无人驾驶 卡车运输调度 被囊群算法 Singer映射 参数位置自适应更新 

分 类 号:TD57[矿业工程—矿山机电]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象