检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CHEN Jian HUANG Detian HUANG Weiqin 陈健;HUANG Detian;HUANG Weiqin(College of Engineering,Huaqiao University,Quanzhou 362021,P.R.China;School of Information Science and Technology,Xiamen University Tan Kah Kee College,Zhangzhou 363105,P R.China)
机构地区:[1]College of Engineering,Huaqiao University,Quanzhou 362021,P.R.China [2]School of Information Science and Technology,Xiamen University Tan Kah Kee College,Zhangzhou 363105,P R.China
出 处:《High Technology Letters》2022年第2期197-207,共11页高技术通讯(英文版)
基 金:Supported by the National Natural Science Foundation of China(No.61901183);Fundamental Research Funds for the Central Universities(No.ZQN921);Natural Science Foundation of Fujian Province Science and Technology Department(No.2021H6037);Key Project of Quanzhou Science and Technology Plan(No.2021C008R);Natural Science Foundation of Fujian Province(No.2019J01010561);Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province 2019(No.JAT191080);Science and Technology Bureau of Quanzhou(No.2017G046)。
摘 要:Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics.
关 键 词:image super-resolution(SR) wavelet transform convolutional neural network(CNN) second-order channel attention(SOCA) non-local self-similarity
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62