检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jing Luo Qi Mao Yaojie Wang Zhenghao Shi Xinhong Hei
出 处:《Brain Science Advances》2022年第2期127-141,共15页神经科学(英文)
基 金:This work is supported by the National Natural Science Foundation of China(Grant Nos.61906152 and 62076198);Key Research and Development Program of Shaanxi(Program Nos.2021GY-080 and 2020GXLH-Y005)。
摘 要:Objective:From September 10 to 13,2021,the finals of the BCI Controlled Robot Contest in World Robot Contest 2021 were held in Beijing,China.Eleven teams participated in the Algorithm Contest of Calibration-free Motor Imagery BCI.The participants employed both traditional electroencephalograph(EEG)analysis methods and deep learning-based methods in the contest.In this paper,we reviewed the algorithms utilized by the participants,extracted the trends and highlighted interesting approaches from these methods to inform future contests and research recommendations.Method:First,we analyzed the algorithms in separate steps,including EEG channel and signal segment setup,prepossessing technology,and classification model.Then,we emphasized the highlights of each algorithm.Finally,we compared the competition algorithm with the SOTA algorithm.Results:The algorithm employed in the finals performed better than that of the SOTA algorithm.During the final stage of the contest,four of the top five teams used convolutional neural network models,suggesting that with the rapid development of deep learning,convolutional neural network-based models have been the most popular methods in the field of motor imagery BCI.
关 键 词:brain-computer interface motor imagery con-volutional neural network World Robot Contest
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TP391.41[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28