检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王涛 李勐 孟丽岩 许国山[2] 王贞 WANG Tao;LI Meng;MENG Liyan;XU Guoshan;WANG Zhen(School of Civil Engineering,Heilongjiang University of Science&Technology,Harbin 150022,China;School of Civil Engineering,Harbin Institute of Technology,Harbin 150090,China;School of Civil Engineering&Architecture,Wuhan University of Technology,Wuhan 430070,China)
机构地区:[1]黑龙江科技大学建筑工程学院,哈尔滨150022 [2]哈尔滨工业大学土木工程学院,哈尔滨150090 [3]武汉理工大学土木与建筑学院,武汉430070
出 处:《振动与冲击》2022年第11期72-82,155,共12页Journal of Vibration and Shock
基 金:国家自然科学基金项目(51978213,52078398);哈尔滨工业大学结构工程灾变与控制教育部重点实验室开放基金课题(HITCE202008)。
摘 要:为解决模型更新算法因初始参数选择不当对模型参数识别精度的影响,提出统计容积卡尔曼滤波器的混合试验模型更新方法。该方法采用容积卡尔曼滤波器算法多次识别模型参数,将统计后的参数识别值样本均值作为最终的识别结果,以弱化算法初始参数选择对参数识别结果的影响。应用统计容积卡尔曼滤波器对自复位摩擦耗能支撑模型进行在线参数识别,分析了在不同参数条件下统计容积卡尔曼滤波器的识别精度;针对两层带有自复位摩擦耗能支撑框架结构进行混合试验数值仿真。结果表明,基于统计容积卡尔曼滤波器的方法可以有效提高模型更新混合试验精度及鲁棒性。Here,to solve effects of improper selection of initial parameters on accuracy of model parametric identification,the hybrid test model updating method based on statistical cubature Kalman filter was proposed.With this method,the cubature Kalman filter algorithm was used to identify the model’s parameters for many times,and statistical sample means of parametric identification values were taken as the final identification results to weaken effects of selection of initial parameters of the algorithm on model parametric identification results.The statistical cubature Kalman filter was used to do on-line parametric identification of a self-centering energy dissipation model,and the identification accuracy of the statistical cubature Kalman filter under conditions of different parameters was analyzed.The hybrid test numerical simulation was performed for a two-story frame structure with self-centering energy dissipation.The results showed that the proposed method can effectively improve accuracy and robustness of model updating hybrid tests.
关 键 词:混合试验 模型更新 容积卡尔曼滤波器(CKF) 自复位摩擦耗能支撑 在线参数识别
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147