检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Manzhu Yu Qunying Huang Han Qin Chris Scheele Chaowei Yang
机构地区:[1]Department of Geography and Geoinformation Science,George Mason Univeristy,Fairfax,VA,USA [2]Department of Geography,University of Wisconsin-Madison,Madison,WI,USA [3]Ankura,Washington,DC,USA
出 处:《International Journal of Digital Earth》2019年第11期1230-1247,共18页国际数字地球学报(英文)
基 金:supported by National Science Foundation[grant number IIP-1338925].
摘 要:Social media platforms have been contributing to disaster management during the past several years.Text mining solutions using traditional machine learning techniques have been developed to categorize the messages into different themes,such as caution and advice,to better understand the meaning and leverage useful information from the social media text content.However,these methods are mostly event specific and difficult to generalize for cross-event classifications.In other words,traditional classification models trained by historic datasets are not capable of categorizing social media messages from a future event.This research examines the capability of a convolutional neural network(CNN)model in cross-event Twitter topic classification based on three geo-tagged twitter datasets collected during Hurricanes Sandy,Harvey,and Irma.The performance of the CNN model is compared to two traditional machine learning methods:support vector machine(SVM)and logistic regression(LR).Experiment results showed that CNN models achieved a consistently better accuracy for both single event and crossevent evaluation scenarios whereas SVM and LR models had lower accuracy compared to their own single event accuracy results.This indicated that the CNN model has the capability of pre-training Twitter data from past events to classify for an upcoming event for situational awareness.
关 键 词:Text mining deep learning hurricanes TWITTER convolutional neural network situational awareness
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222