湍流系统的能量最小多尺度模型研究进展  

Research progress of energy-minimization multi-scale method for turbulent system

在线阅读下载全文

作  者:王利民[1,2] 郭舒宇 向星 付少童 WANG Limin;GUO Shuyu;XIANG Xing;FU Shaotong(State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China;School of Chemical Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院过程工程研究所多相复杂系统国家重点实验室,北京100190 [2]中国科学院大学化工学院,北京100049

出  处:《化工学报》2022年第6期2415-2426,F0003,共13页CIESC Journal

基  金:国家自然科学基金项目(51776212,91834303);国家重点研发计划项目(2018YFB1500902);国家数值风洞工程项目(NNW2020ZT1-A20);中国科学院前沿科学重点研究计划项目(QYZDBSSWSYS029)。

摘  要:湍流一直被视为经典物理中百年未解的难题,也被认为是检验新理论和新方法的试金石。新兴的介科学,由气固流态化中能量最小多尺度(energy-minimizationmulti-scale,EMMS)模型发展而来,基于各主导因素在竞争中协调的观点,致力于分析挑战性的介尺度现象。基于介科学框架,介绍了湍流系统中介尺度行为的共性原理和最新的介尺度观点,包括黏性机制和惯性机制的竞争中协调、湍流稳定性条件。在此基础上发展了EMMS湍流模型并实现与计算流体力学(computationalfluiddynamics,CFD)的耦合,贡献于层湍转捩预测和全球气候模型的改进。EMMS湍流模型复现了介区域内黏性控制机制与惯性控制机制的竞争中协调,为介科学理论作为复杂系统的普适理论提供依据。Turbulence has always been viewed as a century lasting difficult problem in classic physics,and it was also viewed as a touchstone for verifying new theories and methods.The emerging mesoscience,developed from the energy-minimization multi-scale(EMMS)model in gas-solid fluidization,is devoted to the analysis of challenging mesoscale phenomena based on the view that the dominant factors are coordinated in competition.This article investigates the common principle for mesoscale behavior and recent viewpoints in turbulence through a mesoscience framework,including the compromise-in-competition between viscosity and inertia,as well as the turbulence stability condition.On this basis,EMMS-based turbulence model is developed and coupled with computational fluid dynamics(CFD),making a significant contribution to laminar-turbulent transition prediction and the improvement of global climate models.EMMS-based turbulence model successfully reproduces the compromise-in-competition between viscous and inertial dominant mechanisms in mesoregime,providing important proof that the mesoscience can be universal theory for complex system.

关 键 词:湍流 介科学 竞争中协调 介尺度 复杂流体 计算流体力学 

分 类 号:O357.5[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象