基于改进CEEMDAN分解与时空特征的低压供电线路串联故障电弧检测  被引量:19

Series fault arc detection in low voltage power supply line based on improved CEEMDAN decomposition and spatial-temporal features

在线阅读下载全文

作  者:杨帆 宿磊 杨志淳 徐丙垠[2,3] 薛永端 王玮[2] 邹国锋[2] YANG Fan;SU Lei;YANG Zhichun;XU Bingyin;XUE Yongduan;WANG Wei;ZOU Guofeng(Electric Power Research Institute of State Grid Hubei Electric Power Co.,Ltd.,Wuhan 430077,China;School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo 255049,China;Shandong Kehui Power Automation Co.,Ltd.,Zibo 255087,China;College of New Energy,China University of Petroleum(East China),Qingdao 266580,China)

机构地区:[1]国网湖北省电力有限公司电力科学研究院,湖北武汉430077 [2]山东理工大学电气与电子工程学院,山东淄博255049 [3]山东科汇电力自动化股份有限公司,山东淄博255087 [4]中国石油大学(华东)新能源学院,山东青岛266580

出  处:《电力系统保护与控制》2022年第12期72-81,共10页Power System Protection and Control

基  金:国家自然科学基金项目资助(52077221);国网湖北省电力有限公司科技项目资助(52153220001V)。

摘  要:针对低压线路中的串联故障电弧检测难题,提出基于改进CEEMDAN分解与时空特征的串联故障电弧检测方法。首先,采用CEEMDAN算法实现电流信号的完备分解,并以各IMF分量的峭度指标、裕度指标、能量特征和能量熵特征为判定依据,实现高频段信号粗选。然后,提出空间尺度和时间尺度相融合的特征构建方法,捕获各粗选高频IMF分量的局部特征,增强电流特征对比度和判别力。最后,采用子空间变换算法实现电流时空特征集合的二次降维,并基于SVM实现串联故障电弧检测。实际试验证明,所提算法的平均故障电弧检测准确率达88.33%,能够实现高效的串联故障电弧检测。There is a problem of series arc fault detection in low voltage lines.Thus a series arc fault detection method based on improved CEEMDAN decomposition and spatial-temporal features is proposed.First,the CEEMDAN algorithm is used to complete the decomposition of the current signal,and the rough selection of the high-frequency signal is realized based on the kurtosis index,margin index,energy feature and energy entropy feature of each IMF component.Then,a feature construction method combining spatial and temporal scales is proposed to capture the local feature of each high-frequency IMF component.This enhances the contrast and discriminants of the current feature.Finally,some subspace transformation algorithms are used to implement the second dimension reduction of the current spatial-temporal feature set,and the series fault arc detection is realized based on SVM.The actual test shows that the average fault arc detection accuracy of the proposed algorithm is 88.33%,which is efficient for series fault arc detection.

关 键 词:串联故障电弧检测 CEEMDAN分解 频段粗选 时空特征 支持向量机 

分 类 号:TM501.2[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象