Gelfand-Shilov Smoothing Effect for the Radially Symmetric SpatiallyHomogeneous Landau Equation under the Hard Potentialγ=2  

在线阅读下载全文

作  者:LI Haoguang WANG Hengyue 

机构地区:[1]School of Mathematics and Statistics,South-Central University for Nationalities,Wuhan 430074,China

出  处:《Journal of Partial Differential Equations》2022年第1期11-30,共20页偏微分方程(英文版)

基  金:the Fundamental Research Funds for the Central Universities of China,South-Central University for Nationalities(No.CZT20007);the Natural Science Foundation of China(No.11701578).

摘  要:Based on the spectral decomposition for the linear and nonlinear radially symmetric homogeneous non-cutoff Landau operators under the hard potentialγ=2 in perturbation framework,we prove the existence and Gelfand-Shilov smoothing effect for solution to the Cauchy problem of the symmetric homogenous Landau equation with small initial datum.

关 键 词:Gelfand-Shilov smoothing effect spectral decomposition Landau equation hard potentialγ=2 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象