SDU-QIT立铣刀磨损试验数据集  被引量:1

SDU-QIT End Milling Cutter Accelerated Life Test Datasets

在线阅读下载全文

作  者:信苗苗 曹凤 江铭炎[2,3] 厉相宝 李东阳 张明强[2,3] 雷腾飞 袁东风[2,3] XIN Miaomiao;CAO Feng;JIANG Mingyan;LI Xiangbao;LI Dongyang;ZHANG Mingqiang;LEI Tengfei;YUAN Dongfeng(School of Mechanic and Electronic Engineering,Qilu Institute of Technology,Jinan 250200;School of Information Science and Engineering,Shandong University,Qingdao 266237;Institute of Advanced Information Technology,Shandong University,Jinan 250100)

机构地区:[1]齐鲁理工学院机电工程学院,济南250200 [2]山东大学信息科学与工程学院,青岛266237 [3]山东大学先进信息技术研究院,济南250100

出  处:《机械工程学报》2022年第9期166-171,共6页Journal of Mechanical Engineering

基  金:山东省重大科技创新工程(2019JZZY010111);山东省重点研发计划(2019GGX104092)资助项目。

摘  要:刀具故障预测与健康管理(Prognostic and health management,PHM)是机床制造领域的关键问题。作为数控机床的“牙齿”,刀具的健康状态直接影响着机床加工效率和产品质量。借助大数据与人工智能(AI)技术实现对刀具运行状态的实时精准监测,目前已成为学术界和工业界关注的热点问题。然而,刀具高质量全寿命周期数据的匮乏,严重制约了机械装备PHM技术的理论研究与工程应用。为解决上述问题,开展了面向刀具全寿命周期的数控加工中心立铣刀多工况试验与数据采集工作,并将获取的试验数据集面向全球学者公开发布。该数据集共包含2种工况下的立铣刀全寿命周期振动信号,且明确标注了刀具主后刀面最大VB值、主后刀面1/2ap(背吃刀量)处VB值、主后刀面SVB值,副后刀面最大VB值、副后刀面SVB值等5种标签,可为PHM领域基于AI的刀具故障诊断与预测性维护研究提供数据支撑。The Prognostic Health Monitoring(PHM)of milling cutters is key issue in the field of machine tool manufacturing.As the"teeth"of computer numerical control(CNC)machine tools,its health status directly affects the machining efficiency and the quality of products.It has become a hot topic in both academic research and industries,with the help of big data and deep learning technology to realize high reliable tool fault diagnosis and predictive maintenance.However,the lack of high-quality yet life-cycle data has become the bottleneck restricting academic research and engineering application.To solve this problem,the end milling cutter life test in CNC machining center are carried out,and the obtained test data set are published for scholars all over the world.This data set contains the vibration signals of the end milling cutter in the whole life cycle under two working conditions,and clearly marks five groups of data,such as the maximum wear width at the main back of the cutter,wear area SVB and wear width VB at 1/2ap(back feed),and the maximum wear width and wear area SVB at the auxiliary back,which provides data support for the research in PHM field.

关 键 词:数据集开源 刀具全寿命周期 故障预测与健康管理 

分 类 号:TG714[金属学及工艺—刀具与模具]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象