改进Q学习算法在作业车间调度问题中的应用  被引量:4

Application of Improved Q Learning Algorithm in Job Shop Scheduling Problem

在线阅读下载全文

作  者:赵也践 王艳红[1] 张俊 于洪霞[1] 田中大[1] Zhao Yejian;Wang Yanhong;Zhang Jun;Yu Hongxia;Tian Zhongda(School of Artificial Intelligence,Shenyang University of Technology,Shenyang 110027,China)

机构地区:[1]沈阳工业大学人工智能学院,辽宁沈阳110027

出  处:《系统仿真学报》2022年第6期1247-1258,共12页Journal of System Simulation

基  金:国家自然科学基金(61803273);辽宁省重点研发计划(2020JH2/10100041)。

摘  要:为解决动态环境下作业车间调度问题,提出了一种基于改进Q学习算法和调度规则的动态调度算法。以“剩余任务紧迫程度”的概念来描述动态调度算法的状态空间;设计了以“松弛越高,惩罚越高”为宗旨的回报函数;通过引入以Softmax函数为主体的动作选择策略来改进传统的Q学习算法,使改进后的Q学习算法在前期选择不同动作的概率更加平等,同时改善了贪婪策略在学习后期还会选择次优动作的现象。仿真结果表明:该调度算法相较于改进前,性能指标平均提升约6.5%;相较于IPSO算法和PSO算法,性能指标平均提升分别约为38.3%和38.9%,调度结果明显优于使用单一调度规则以及传统优化算法等常规方法。Aiming at the job shop scheduling in a dynamic environment,a dynamic scheduling algorithm based on an improved Q learning algorithm and dispatching rules is proposed.The state space of the dynamic scheduling algorithm is described with the concept of"the urgency of remaining tasks"and a reward function with the purpose of"the higher the slack,the higher the penalty"is disigned.In view of the problem that the greedy strategy will select the sub-optimal actions in the later stage of learning,the traditional Q learning algorithm is improved by introducing an action selection strategy based on the"softmax"function,which makes the improved Q learning algorithm more equal in the probability of selecting different actions in the early stage.The simulation results obtained from 6 different test instances show that the performance indicator of the scheduling algorithm is improved by an average of about 6.5%compared to the before and by about 38.3%and 38.9% respectively compared with the IPSO algorithm and PSO algorithm.The indicator is significantly better than conventional methods such as using a single dispatching rule and traditional optimization algorithms.

关 键 词:强化学习 Q学习 调度规则 动态调度 作业车间调度 

分 类 号:TB497[一般工业技术] TP278[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象