一种基于用户反馈检测大型在线系统前台故障的方法  

A FRONT-END ISSUE DETECTION APPROACH BASED ON USER FEEDBACK FOR LARGE-SCALE ONLINE SYSTEMS

在线阅读下载全文

作  者:卢皓川 郑吴杰 周扬帆[1,2] 王新 Lu Haochuan;Zheng Wujie;Zhou Yangfan;Wang Xin(School of Computer Science,Fudan University,Shanghai 200433,China;Shanghai Key Laboratory of Intelligent Information Processing,Shanghai 200433,China;Tencent Inc.,Shenzhen 518000,Guangdong,China)

机构地区:[1]复旦大学计算机科学技术学院,上海200433 [2]上海市智能信息处理重点实验室,上海200433 [3]深圳市腾讯计算机系统有限公司,广东深圳518000

出  处:《计算机应用与软件》2022年第5期1-7,29,共8页Computer Applications and Software

基  金:国家自然科学基金项目(61672164)。

摘  要:大型在线系统在不同终端中的客户端由于兼容问题和频繁迭代容易出现前台显示故障,如控件覆盖、乱码等。由于传统系统后台的指标监控方法无法应对症状繁杂的前台故障,提出利用用户反馈动态检测前台故障的方案,通过对用户反馈的实时分析,挖掘其中关键信息动态构建监控指标,来表征并覆盖各种类型的前台故障。进一步设计快速在海量指标中进行异常检测的两阶段算法,实时地检测出指标中的异常并反映故障。该方法在多个真实大型在线系统中均获得了良好的检测效果,准确率达70%,召回率超过90%。Large-scale online systems have clients applications in different terminal devices with compatibility issues and frequent iteration,which can frequently encounter various front-end issues such as controls cover and messy code.Traditional methods based on monitoring back-end system indicators cannot properly detect such front-end issues.In view of this,we propose a new approach that leverages user feedback text to automatically detect front-end issues.We analyzed the feedback texts in real time,and extracted key information to dynamically construct indicators which could indicate various front-end issues.We further designed a two-stage algorithm to achieve a real-time anomaly detection in those constructed indicators,and in turn detect the occurring front-end issues accordingly.This approach has been applied to several real online service systems to perform front-end issue detection.It proves to be an effective effort,achieving precision at 70%and recall over 90%.

关 键 词:故障检测 用户反馈 在线系统 

分 类 号:TP391.5[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象