基于改进鲸鱼算法的长江经济带配送问题研究  

YANGTZE RIVER ECONOMIC BELT DISTRIBUTION BASED ON IMPROVED WHALE ALGORITHM

在线阅读下载全文

作  者:朱光福[1] 朱云波[1] Zhu Guangfu;Zhu Yunbo(Business School,Chongqing City Management College,Chongqing 401331,China)

机构地区:[1]重庆城市管理职业学院商学院,重庆401331

出  处:《计算机应用与软件》2022年第5期313-319,335,共8页Computer Applications and Software

基  金:重庆社科联基金项目(2016BS084)。

摘  要:长江经济带物流配送很大程度影响着我国物流成本和企业竞争力。因此,对长江经济带配送问题的求解算法进行研究。建立长江经济带配送成本最小的数学模型;采用混沌机制、自适应惯性权重、蛙跳算法和模拟退火算法对鲸鱼算法(WOA)进行改进,提出改进WOA(IWOA);对长江经济带配送实例和4个国际标准算例进行测试。仿真实验中,IWOA能够有效求解实例,且能够求得1个与更新1个小规模国际标准算例最优解,求出大规模国际标准算例的最终解与最优解相差1.4%以内,求得各算例平均值、算法平均运行时间均优于WOA、遗传算法(GA)和粒子群算法(PSO)。结果表明,IWOA性能优于WOA、GA和PSO。Logistics distribution in the Yangtze River economic belt has a great impact on the Chinese logistics cost and enterprises competitiveness.Therefore,we study the algorithm solving the distribution problem in the Yangtze River economic belt.A mathematical model for minimizing the distribution cost in the Yangtze River economic belt was established.The chaos mechanism,adaptive inertia weight,frog leaping algorithm and simulated annealing algorithm were improved to propose the whale optimization algorithm(WOA).We carried out the simulation test on one distribution case and four international standard cases in the Yangtze River economic belt.The simulation shows that,IWOA can effectively solve the example,and obtain and update the optimal solution of a small-scale international standard example.The difference between the final solution and the optimal solution of the large-scale international standard cases is less than 1.4%.The average value of each example and the average running time of the algorithm are better than WOA,genetic algorithm(GA)and particle swarm optimization(PSO).The results show that the performance of IWOA is better than WOA,GA and PSO.

关 键 词:物流配送 鲸鱼算法 长江经济带 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象