基于时域旋转不变技术的目标方位估计方法  

A Target Azimuth Estimation Method based on Time Domain ESPRIT

在线阅读下载全文

作  者:邱岚[1] QIU Lan(Department of Information Engineering, Jiangxi University Of Technology, Nanchang 330098, China)

机构地区:[1]江西科技学院信息工程学院,江西南昌330098

出  处:《探测与控制学报》2022年第3期90-96,共7页Journal of Detection & Control

基  金:江西省高等学校教学改革研究课题(JXJG-18-24-3);江西省教育厅科学技术研究项目(GJJ180983);江西科技学院教学改革研究课题(JY1720)。

摘  要:针对频域旋转不变技术存在的时频变换所需采样点数和协方差矩阵估计所需快拍数需要折中处理问题,提出基于时域旋转不变技术的目标方位估计方法。该方法利用两傅里叶变换对阵列接收数据进行复解析变换处理,获取时域解析数据,并按窄带划分方式对其滤波处理;在不需要对解析数据做时延迟补偿情况下,通过多个时域采样点累积方式解决协方差矩阵估计所需快拍数问题,得到协方差矩阵估计值;通过旋转不变技术实现对该频带目标方位估计。数值仿真及实测数据处理结果表明,相比频域旋转不变方法,本文方法保持对目标方位估计精度前提下,在最低输入信噪比要求上降低了5 dB,进一步拓宽频域旋转不变方法在工程领域的实现方式。For the problem of compromise between the number of sampling points of time-frequency transformation and the number of snapshots of covariance matrix estimation,a target azimuth estimation method based on rotation invariance technique in time domain was proposed.Firstly,the complex analytical data was obtained by twice Fourier transform from the received data of array in time domain,and was filtered according to the narrowband partition.Then,without making time delay compensation for the complex analytical data,the problem of the number of snapshots of covariance matrix estimation was solved by multiple time domain sample points accumulating,and the covariance matrix estimation value was obtained.Finally,the target azimuth estimation of this frequency band was realized by rotation invariant technique.The processing results of numerical simulation and measured data show that,compared with the ESPRIT method,when keep the accuracy of target azimuth estimation,the proposed method reduces the requirement of minimum input signal-to-noise ratio by 5dB.That further expands the implementation of ESPRIT method in the field of engineering.

关 键 词:目标方位估计 旋转不变技术 协方差矩阵 时域 

分 类 号:TN912.1[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象