Dynamics of breathers and rogue waves in scalar and multicomponent nonlinear systems  

在线阅读下载全文

作  者:Weiying Wang Xiubin Wang 

机构地区:[1]School of Economics,Harbin University of Commerce,Harbin 150028,China [2]Department of Mathematics,Harbin Institute of Technology,Harbin 150001,China

出  处:《Communications in Theoretical Physics》2022年第4期1-12,共12页理论物理通讯(英文版)

摘  要:In this paper,we propose a new method,the variable separation technique,for obtaining a breather and rogue wave solution to the nonlinear evolution equation.Integrable systems of the derivative nonlinear Schr?dinger type are used as three examples to illustrate the effectiveness of the presented method.We then obtain a family of rational solutions.This family of solutions includes the Akhmediev breather,the Kuznetsov-Ma breather,versatile rogue waves,and various interactions of localized waves.Moreover,the main characteristics of these solutions are discussed and some graphics are presented.More importantly,our results show that more abundant and novel localized waves may exist in the multicomponent coupled equations than in the uncoupled ones.

关 键 词:rogue waves breather waves the variable separation technique 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象