EOM-CCSD-Based Neural Network Diabatic Potential Energy Matrix for ^(1)πσ^(*)-Mediated Photodissociation of Thiophenol  

基于激发态运动方程耦合簇的神经网络透热势能矩阵:苯硫酚^(1)πσ^(*)态-介导的光解

在线阅读下载全文

作  者:Siting Hou Chaofan Li Huixian Han Changjian Xie 侯思婷;李超凡;韩慧仙;谢长建(西北大学现代物理研究所,陕西省理论物理前沿重点实验室,西安710127;西北大学物理学院,西安710127)

机构地区:[1]Institute of Modern Physics,Shaanxi Key Laboratory for Theoretical Physics Frontiers,Northwest University,Xi'an 710127,China [2]School of Physics,Northwest University,Xi'an 710127,China

出  处:《Chinese Journal of Chemical Physics》2022年第3期461-470,I0002,共11页化学物理学报(英文)

基  金:supported by the National Natural Science Foundation of China(No.22073073);the Startup Foundation of Northwest University;The Double First-Class University Construction Project of Northwest University。

摘  要:A new diabatic potential energy matrix(PEM)of the coupled~^(1)ππ^(*)and~1πσ*states for the~1πσ*-mediated photodissociation of thiophenol was constructed using a neural network(NN)approach.The diabatization of the PEM was specifically achieved by our recent method[Chin.J.Chem.Phys.34,825(2021)],which was based on adiabatic energies without the associated costly derivative couplings.The equation of motion coupled cluster with single and double excitations(EOM-CCSD)method was employed to compute adiabatic energies of two excited states in this work due to its high accuracy,simplicity,and efficiency.The PEM includes three dimensionalities,namely the S-H stretch,C-S-H bend,and C-C-S-H torsional coordinates.The root mean square errors of the NN fitting for the S1 and S2 states are 0.89 and 1.33 me V,respectively,suggesting the high accuracy of the NN method as expected.The calculated lifetimes of the S1 vibronic 00 and31 states are found to be in reasonably good agreement with available theoretical and experimental results,which validates the new EOM-CCSD-based PEM fitted by the NN approach.The combination of the diabatization scheme solely based on the adiabatic energies and the use of EOM-CCSD method makes the construction of reliable diabatic PEM quite simple and efficient.

关 键 词:Neural network Diabatic potential energy matrix Photodissociation dynamics 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] O643.1[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象