检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙霖 王跻权 石利飞 侯建民[3] 赵莎 刘杰[3] 董霖 郑增威 SUN Lin;WANG Jiquan;SHI Lifei;HOU Jianmin;ZHAO Sha;LIU Jie;DONG Lin;ZHENG Zengwei(College of Computer and Computing Science,Zhejiang University City College,Hangzhou Zhejiang 310015,China;College of Computer Science and Technology,Zhejiang University,Hangzhou Zhejiang 310017,China;China Earthquake Networks Center,Beijing 100045,China;Merit Interactive Co.,Ltd.,Hangzhou Zhejiang 310012,China)
机构地区:[1]浙大城市学院计算机与计算科学学院,浙江杭州310015 [2]浙江大学计算机科学与技术学院,浙江杭州310017 [3]中国地震台网中心,北京100045 [4]每日互动股份有限公司,浙江杭州310012
出 处:《传感技术学报》2022年第4期530-537,共8页Chinese Journal of Sensors and Actuators
基 金:国家重点研发计划(2018YFC1504006);国家自然科学基金(62072402)。
摘 要:地震早期预警系统能够在震后数秒内快速估计地震影响,并通告可能受影响的区域,可以有效避免人员伤亡和财产损失。然而,传统地震早期预警系统需要耗费大量资金建设高密度地震台网。近些年,随着智能手机的普及,基于智能手机的地震早期预警(SEEW)研究受到广泛关注。SEEW系统的误警率和漏检率一直是研究的难点,也是影响系统实际应用部署的关键。采用深度学习、统计推断等模型构建了一种SEEW决策方法:(1)通过在长短时记忆(LSTM)模型中引入注意力机制,建立手机地震信号触发模型;(2)提出了一种基于时空一致的手机触发比例算子,并建立了基于统计推断的地震判别模型。通过仿真平台测试了方法性能,结果表明,该方法与类似方法相比,在极低的误警率下,地震成功预警率有显著提升。Earthquake Early Warning(EEW)can quickly estimate the impact of an earthquake within seconds after the earthquake and notify the areas that may be affected by the earthquake,which can effectively avoid casualties and property damage.However,traditional earthquake early warning systems need the building of a high-density seismic network,which costs a lot of money.In recent years,with the popularity of smartphones,the research on smartphone-based earthquake early warning(SEEW)systems has received widespread attention.The false alarm rate and missed detection rate of the SEEW system are always the tough issues in the study,and it is also the key to the actual application and deployment of the system.We use deep learning and statistical inference models to build a SEEW decision-making method.Firstly,a mobile phone seismic signal trigger model is established by introducing the attention mechanism into the long short term memory(LSTM)model;Secondly,a proportional operator of the triggered mobile phones based on temporal and spatial consistency is proposed,and a statistical inference-based earthquake discrimination model in the server is established.The performance of this method is tested through simulation platform.The results show that,compared with similar methods,the proposed method significantly improves the earthquake early warning rate under an extremely low false alarm rate.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28