基于黏菌算法优化VMD-CNN-GRU模型的年径流预测  被引量:11

Annual runoff prediction based on VMD-CNN-GRU model optimized by slime mould algorithm

在线阅读下载全文

作  者:徐冬梅[1] 夏王萍 王文川[1] XU Dongmei;XIA Wangping;WANG Wenchuan(College of Water Resources,North China University of Water Resources and Electric Power,Zhengzhou 450046,China)

机构地区:[1]华北水利水电大学水资源学院,郑州450046

出  处:《南水北调与水利科技(中英文)》2022年第3期429-439,共11页South-to-North Water Transfers and Water Science & Technology

基  金:河南省重点研发与推广专项项目(202102310259,202102310588);河南省高校科技创新团队项目(18IRTSTHN009)。

摘  要:为提高年径流预测精度,引入黏菌算法(slime mould algorithm,SMA)和变分模态分解算法(variational mode decomposition,VMD),提出一种基于卷积神经网络(convolutional neural network,CNN)和门控循环单元(gated recurrent unit,GRU)神经网络的组合预测模型(VMD-SMA-CNN-GRU)。利用VMD对径流数据进行分解;采用SMA优化CNN-GRU模型参数,构建模型对每个分量进行预测;各分量结果相加得到最终结果。以兰西水文站为例,将所建模型与CEEMDAN(complete ensemble empirical mode decomposition with adaptive noise)-CNN-GRU、VMD-CNN-LSTM(long short-term memory)、VMD-LSTM、VMD-GRU、VMD-PSO(particle swarm optimization)-CNN-GRU、SMA-CNN-GRU和CNN-GRU预测模型进行对比分析。结果表明:SMA优化的VMD-CNN-GRU模型预测精度不仅高于上述7种模型,而且避免了人工试算确定CNN-GRU模型参数效率低的不足,为年径流预测提供了一种新方法。Medium and long-term hydrological forecasting is an essential link in management,optimization of water resources,flood control,drought relief,and reservoir optimal operation.With the rapid development of science and technology,many modern artificial intelligence(AI)models have been applied to hydrological forecasting,such as back-propagation artificial neural network,support vector machine and long short-term memory neural network.Among the AI models,convolutional neural network(CNN)is a unique deep network,which can fully excavate the correlation between data.Gated recurrent unit neural network(GRU),a kind of the recurrent neural network,is a variant of long short-term memory neural network(LSTM).GRU is often used in time-series data prediction and can solve the problem of gradient disappearance.The combined model of convolutional neural network and gated recurrent unit neural network(CNN-GRU)was applied in various fields except runoff prediction.Additionally,for the setting of the parameters of CNN-GRU hybrid neural network,most people used the control variable method for trial calculation,which was not only low in efficiency and low in accuracy.Hence,a combined prediction model(VMD-SMA-CNN-GRU)based on convolutional neural network and gated recurrent unit neural network was proposed by introducing slime mould algorithm(SMA)and variational mode decomposition(VMD).The four main steps of the present VMD-SMA-CNN-GRU forecasting model can be summarized as follows:The original runoff series was decomposed by VMD to obtain several intrinsic mode functions and a residual.The slime mould population size n and the maximum iteration M was set.Subsequently,SMA was used to optimize key parameters such as the number of convolution layers,the number of neurons in the hidden layer of GRU,training times and learning rate.The mean square error(MAE)was chosen as the objective function of the optimization algorithm.SMA-CNN-GRU model was used to predict all the subseries.The predicted values obtained above were accumulated to dedu

关 键 词:变分模态分解算法 黏菌算法 卷积神经网络 门控循环单元神经网络 径流预测 

分 类 号:TV214[水利工程—水文学及水资源] P338[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象