检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘桂荣[1] 张刘雄 LIU Guirong;ZHANG Liuxiong(School of Mathematical Sciences,Shanxi University,Taiyuan 030006,China)
出 处:《山西大学学报(自然科学版)》2022年第3期599-605,共7页Journal of Shanxi University(Natural Science Edition)
基 金:国家自然科学基金(11971279)。
摘 要:基于个体间接触的异质性和疾病传播环境的随机性,利用随机过程理论建立了复杂网络上随机SEIR模型。通过随机时间变换,将随机SEIR模型进行变形,并利用大数定律证明了最终染病规模的收敛性;利用中心极限定理给出传染病最终染病规模的分布。最后通过数值模拟验证了理论结果。理论结果可以为传染病最终染病规模的精确预测提供依据。Based on the heterogeneity of the contact between individuals and the randomness of the environment in which infectious diseases spread,a stochastic SEIR model on complex networks is established by using stochastic process theory.The stochastic SEIR model is transformed by random time transformation,and the convergence of the final epidemic size is proved by the law of large numbers.The distribution of the final epidemic size is given by using the central limit theorem.Finally,the theoretical results are verified by numerical simulation.The theoretical results can provide a basis for accurate prediction of the final epidemic size.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.114.165