一种融合注意力机制的建筑物变化检测模型  被引量:10

A model for detecting building changes incorporating attention mechanisms

在线阅读下载全文

作  者:陈良轩 于海洋[1] 李英成[1,2,3,4] 何子鑫 于丽丽 CHEN Liangxuan;YU Haiyang;LI Yingcheng;HE Zi Xin;YU Lili(Key Laboratory of Spatio-temporal Information and Ecological Restoration of Mines,Henan Polytechnic University,Jiaozuo,Henan 454000,China;China TopRS Technology Co.,Ltd.,Beijing 100039,China;Beijing Low Altitude Remote Sensing Data Processing Engineering Technology Research Center,Beijing 100039,China;Key Laboratory for Aerial Remote Sensing Technology of Ministry of Natural Resources,Beijing 100039,China)

机构地区:[1]河南理工大学自然资源部矿山时空信息与生态修复实验室,河南焦作454000 [2]中测新图(北京)遥感技术有限责任公司,北京100039 [3]北京市低空遥感数据处理工程技术研究中心,北京100039 [4]自然资源部航空遥感技术重点实验室,北京100039

出  处:《测绘科学》2022年第4期153-159,共7页Science of Surveying and Mapping

基  金:国家重点研发计划项目(2016YFE0205300);云南省刑事科学技术重点实验室资助项目(2020SKF01)。

摘  要:针对城市建筑物变化检测问题,该文基于U-net深度学习语义分割模型,提出了一种融合残差结构和注意力机制的遥感影像建筑物变化检测模型,以U-net模型为基础,引入ResNet50的残差结构用来代替编码阶段中的卷积层,在加深网络深度的同时解决梯度消失的问题;在解码阶段横向连接结构中引入注意力机制,加强网络对变化建筑物特征的学习。实验表明,在U-net结构的基础上加入残差结构和注意力模块后,建筑物变化检测的精确率、召回率、F1值分别提升了6.28%、6.02%、5.88%。In order to address the problem of deterrence of urban building variations,this paper proposed a remote sensing image building variation detection model based on the U-net deep learning semantic segmentation model incorporating residual structure and attention mechanism.The model was based on the U-net model jointly with the residual structure of ResNet50to replace the convolutional layer in the coding stage.Meanwhile,the problem of gradient disappearance was solved when deepening the network depth.An attention mechanism was introduced in the lateral connectivity structure of the decoding stage to be used to enhance the network’s learning of changing building characteristics.The experiment results showed that after adding the residual structure and attention module to the U-net structure,the accuracy,recall and F1 values of building change detection were improved by 6.28%,6.02%and 5.88%respectively.

关 键 词:建筑物变化检测 注意力机制 ResNet50 U-net 

分 类 号:P208[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象