检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李红利[1] 尹飞超 张荣华[2] 马欣 陈虹宇 LI Hongli;YIN Feichao;ZHANG Ronghua;MA Xin;CHEN Hongyu(School of Control Science and Engineering,Tiangong University,Tianjin 300387,P.R.China;School of Artificial Intelligence,Tiangong University,Tianjin 300387,P.R.China;School of Electronics and Information Engineering,Tiangong University,Tianjin 300387,P.R.China)
机构地区:[1]天津工业大学控制科学与工程学院,天津300387 [2]天津工业大学人工智能学院,天津300387 [3]天津工业大学电子与信息工程学院,天津300387
出 处:《生物医学工程学杂志》2022年第3期488-497,共10页Journal of Biomedical Engineering
基 金:国家自然科学基金(62071328);天津市技术创新引导专项(基金)(21YDTPJC00540,21YDTPJC00550)。
摘 要:运动想象脑电信号是低信噪比的非平稳时间序列,单通道脑电分析方法难以有效刻画多通道信号之间的交互特征。本文提出了一种基于多通道注意力的深度学习网络模型,该模型对预处理后的数据进行稀疏时频分解,增强了脑电信号时频特征的差异性。然后利用注意力模块在时间和空间对数据进行注意力映射,让模型可以充分利用脑电信号不同通道的数据特征。最后利用改进的时间卷积网络进行特征融合并进行分类识别。利用BCI competition Ⅳ-2a数据集对所提算法进行验证,结果表明所提算法可有效提升运动想象脑电信号的分类正确率,9名受试者的平均识别率为83.03%,与现有方法相比,提高了脑电信号的分类精度。所提方法增强了不同运动想象脑电数据之间的差异特征,对提升分类器性能的研究具有重要意义。Motor imagery electroencephalogram(EEG) signals are non-stationary time series with a low signalto-noise ratio. Therefore, the single-channel EEG analysis method is difficult to effectively describe the interaction characteristics between multi-channel signals. This paper proposed a deep learning network model based on the multichannel attention mechanism. First, we performed time-frequency sparse decomposition on the pre-processed data, which enhanced the difference of time-frequency characteristics of EEG signals. Then we used the attention module to map the data in time and space so that the model could make full use of the data characteristics of different channels of EEG signals. Finally, the improved time-convolution network(TCN) was used for feature fusion and classification. The BCI competition IV-2a data set was used to verify the proposed algorithm. The experimental results showed that the proposed algorithm could effectively improve the classification accuracy of motor imagination EEG signals, which achieved an average accuracy of 83.03% for 9 subjects. Compared with the existing methods, the classification accuracy of EEG signals was improved. With the enhanced difference features between different motor imagery EEG data, the proposed method is important for the study of improving classifier performance.
关 键 词:脑-机接口 运动想象 注意力机制 稀疏分解 深度学习
分 类 号:R318[医药卫生—生物医学工程] TN911.7[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3