Air2Land:A deep learning dataset for unmanned aerial vehicle autolanding from air to land  

在线阅读下载全文

作  者:Xunchen Zheng Tianjiang Hu 

机构地区:[1]Machine Intelligence and Collective Robotics(MICRO)Lab,Sun Yat-sen University,Guangzhou,China [2]Institute for Artificial Intelligence,Sun Yat-sen University,Guangzhou,China

出  处:《IET Cyber-Systems and Robotics》2022年第2期77-85,共9页智能系统与机器人(英文)

摘  要:In this paper,a novel deep learning dataset,called Air2Land,is presented for advancing the state‐of‐the‐art object detection and pose estimation in the context of one fixed‐wing unmanned aerial vehicle autolanding scenarios.It bridges vision and control for ground‐based vision guidance systems having the multi‐modal data obtained by diverse sensors and pushes forward the development of computer vision and autopilot algorithms tar-geted at visually assisted landing of one fixed‐wing vehicle.The dataset is composed of sequential stereo images and synchronised sensor data,in terms of the flying vehicle pose and Pan‐Tilt Unit angles,simulated in various climate conditions and landing scenarios.Since real‐world automated landing data is very limited,the proposed dataset provides the necessary foundation for vision‐based tasks such as flying vehicle detection,key point localisation,pose estimation etc.Hereafter,in addition to providing plentiful and scene‐rich data,the developed dataset covers high‐risk scenarios that are hardly accessible in reality.The dataset is also open and available at https://github.com/micros‐uav/micros_air2land as well.

关 键 词:autonomous landing(autolanding) deep learning ground stereo vision open dataset unmanned aerial vehicle(UAV) 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象