一种稳健的高动态GNSS干扰抑制算法  被引量:1

A robust GNSS interference suppression algorithm inhigh dynamic environment

在线阅读下载全文

作  者:张秀清[1] 范云婷 王晓君[1] ZHANG Xiuqing;FAN Yunting;WANG Xiaojun(School of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang,Hebei 050018,China)

机构地区:[1]河北科技大学信息科学与工程学院,河北石家庄050018

出  处:《河北科技大学学报》2022年第3期285-292,共8页Journal of Hebei University of Science and Technology

基  金:国防科技重点实验室课题(6142205190401)。

摘  要:为了解决在高动态环境下干扰信号来向迅速变化并移出波束零陷,导致抗干扰算法性能下降的问题,提出了一种基于零陷展宽并加深的稳健波束形成算法。首先在干扰区间内设置多个虚拟干扰代替单个干扰,然后通过协方差矩阵前后向空间平滑技术对协方差矩阵进行数据修正。仿真结果表明,新算法不但可以有效加宽并加深干扰信号来向上的零陷,使得阵列有较好的输出信干噪比,而且当干扰来向快速变化时能保持较强的稳健性。在高动态环境下,当干扰快速运动时仍然具有较高的阵列输出。因此所提算法与其他算法相比具有更好的性能,并具有良好的稳健性,可为高动态环境下的强干扰抑制提供理论参考。In order to solve the problem that the interference signal changes rapidly in the high dynamic environment and moves out of the null of the beam,resulting in the reduced performance of the anti-interference jamming algorithm,a robust beam forming algorithm based on null broadening and deepening was proposed.First set multiple virtual interference in the interference interval instead of a single interference,and then modified the covariance matrix by the covariance matrix forward and backward spatial smoothing technique.Simulation results show that the proposed algorithm can not only effectively widen and deepen the null in the direction of interference signal,which makes the array has a better output signal-to-noise ratio,but also maintain strong robustness when the interference changes rapidly.In the high dynamic environment,has a high array output when interference moves rapidly,the proposed algorithm has better performance and good robustness than other algorithms.It can provide a theoretical reference for strong interference suppression in the high dynamic environment.

关 键 词:数据处理 高动态 GNSS信号 零陷 抗干扰 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象