如何正确运用方差分析——正交设计定量资料一元方差分析与SAS实现  被引量:3

How to use analysis of variance correctly——an analysis of variance for the univariate quantitative data collected from the orthogonal design

在线阅读下载全文

作  者:胡纯严 胡良平 Hu Chunyan;Hu Liangping(Graduate School,Academy of Military Sciences PLA China,Beijing 100850,China;Specialty Committee of Clinical Scientific Research Statistics of World Federation of Chinese Medicine Societies,Beijing 100029,China)

机构地区:[1]军事科学院研究生院,北京100850 [2]世界中医药学会联合会临床科研统计学专业委员会,北京100029

出  处:《四川精神卫生》2022年第3期201-206,共6页Sichuan Mental Health

摘  要:本文目的是介绍正交设计及其定量资料的方差分析和SAS实现。从自由度角度来划分,正交设计可分为饱和正交设计与非饱和正交设计两类;从因素的水平数角度来划分,正交设计又可分为同水平正交设计与混合水平正交设计两类;从规范化角度来划分,正交设计还可分为标准正交设计与非标准正交设计两类。对来自标准正交设计的定量资料,可采用常规方法进行方差分析;而对来自非标准正交设计的定量资料,需要对方差分析方法做必要的改进。本文基于3个实例,借助SAS软件实现了无重复试验和有重复试验标准正交设计定量资料方差分析。The purpose of this paper was to introduce the orthogonal design and its quantitative data analysis of variance and the SAS implementation.From the perspective of degrees of freedom,the orthogonal design could be divided into the saturated orthogonal design and the unsaturated orthogonal design.From the perspective of the number of factor levels,the orthogonal design could be divided into the same level orthogonal design and the mixed level orthogonal design.From the perspective of normalization,the orthogonal design could also be divided into the standard orthogonal design and the non-standard orthogonal design.Quantitative data from the standard orthogonal designs could be analyzed by the conventional methods,while quantitative data from the nonstandard orthogonal designs needed to be improved.Based on three examples,this paper realized the quantitative data analysis of variance with the standard orthogonal design without repeated experiments and with repeated experiments by means of the SAS software.

关 键 词:正交设计 试验点 最优水平组合 方差分析 F分布 

分 类 号:R195.1[医药卫生—卫生统计学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象