Hydrodynamics study of dolphin’s self-yaw motion realized by spanwise flexibility of caudal fin  

在线阅读下载全文

作  者:Zhihan Li Dan Xia Jiabo Cao Weishan Chen Xingsong Wang 

机构地区:[1]School of Mechanical Engineering,Southeast University,Nanjing,Jiangsu 211189,China [2]State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150080,China

出  处:《Journal of Ocean Engineering and Science》2022年第3期213-224,共12页海洋工程与科学(英文)

基  金:This work was supported by National Natural Science Founda-tion of China[grant number 51875101];State Key Laboratory of Robotics and System(HIT)[grant number SKLRS-2018-KF-11].

摘  要:The hydrodynamic performance of the virtual underwater vehicle under self-yaw is investigated numerically in this paper,we aim to explore the fluid laws behind this plane motion achieved by the bionic flexibility,especially the spanwise flexibility of the caudal fin.The kinematics of the chordwise flexible body and the spanwise flexible caudal fin are explored through dynamic mesh technology and user-defined functions(UDF).The 3-D Navier-Stokes equations are applied to simulate the viscid fluid surrounding the bionic dolphin.The study focuses on quantitative problems about the fluid dynamics behind the specific motion law,including speed of movement,energy loss and working efficiency.The current results show that the self-yaw can be composed of two motions,autonomous propulsion and active steering.In addition,the degree of the flexible caudal fin can produce different yaw effects.The chordwise phase differenceФis dominant in the propulsion function,while the spanwise phase differenceδhas a more noticeable effect on the steering function.The pressure distribution on the surface of the dolphin and the wake vortex generated in the flow field reasonably reveal the evolution of self-yaw.It properly turns out that the dolphin can combine the spanwise flexible caudal fin and the chordwise flexible body to achieve self-yaw motion.

关 键 词:Self-yaw dolphin Spanwise flexibility Caudal fin Numerical simulation Hydrodynamic performance 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象